
A Tentative User and Reference Manual

for TclMotif 1.0

Jean-Dominique Gascuel, iMAGIS/IMAG, Grenoble, France

Jean-Dominique.Gascuel@imag.fr

Jan Newmarch, University of Canberra, Australia

jan@pandonia.canberra.edu.au

February 3, 1994

Intro 1

Introduction

TclMotif, alias Tm, is a binding of the Tcl language

1

to the OSF/Motif widgets. Tcl

is an interpreted language originally intended for use as a command language for other

applications. It has been used for that, but has also become useful as a language in its

own right.

Tcl has been extended by a set of widgets called Tk. The Tk widgets are not based

on the X toolkit intrinsics, but are built above Xlib. They allow an easy way of writing

X Window applications.

The standard set of widgets in the X world is now the OSF/Motif set. This forms a

large set of widgets, and these have been through a large amount of development over the

last �ve years. Use of this set is sometimes a requirement by business, and other widget

sets try to conform to them in appearance and behavior. Furthermore, you are sometimes

faced with toolkits that use X toolkit-based widgets. In this case, you have to use a X

toolkit compatible interface builder.

Tm allows the programmer to use the OSF/Motif widgets instead of the Tk widgets

from Tcl programs. This increases programmer choices, and allows comparison of the fea-

tures of both Tcl and the Tk/OSF/Motif style of widget programming. The binding gives

the usefull subset of the OSF/Motif widgets, accessible through the simple interpreted

Tcl language.

Acknowledgments

Tm is based on Tk for the style of widget programming. This was because it provides a

good model, but it also allows the Tcl programmer to move relatively easily between Tk

andOSF/Motif programming. An alternative style of binding to OSF/Motif is used in the

WKSH system, which performs a similar sort of role for the Korn Shell. An intermediate

style is provided by the Wafe X toolkit-based frontend based on Tcl.

As I'm trying to understand Tm in deep, I started to insert my own notes in the user

manual provided by Jan Newmarch. As time is going, this notes becomes more and more

important, and I decided that they may end-up in a usefull user and reference manual for

Tm. They are just my own interpretation of the Scriptures.

Reading this manual

The �rst section, Getting Started, might be su�cient for programmers very familiar both

with OSF/Motif and Tcl. Tcl beginners should start by reading the Ousterout book

de�ning Tcl 7.

The second part, starting at section 2 Basics, is a description of all the basics OSF/

Motif concepts, intented for OSF/Motif beginners.

The last part of this manual, starting from section 6 have been written to be a full ref-

erence manual of Tm, with meaningfull examples, all supported resources, default values,

...

1

For more information on Tcl andTk, see the very neat book written by their author, (An Introduction

To Tcl and Tk, J. Ousterout, Addison-Wesley, 1994)

Getting Started 2

Finally, the index page 74 should provide an extensive and easy crossreference of all

supported features.

1 Getting Started

Tcl/OSF/Motif programs may be run by the Moat (MOtif And Tcl) interpreter. When

called with no arguments it reads Tcl commands from standard input.

When called by

moat file-name

it reads Tcl commands from file-name, executes them and then enters the Moat event

loop. This is similar to the Tk `wish' and the concept was borrowed from there.

Depending on your shell interpreter, you will probably be able to run Tcl{ OSF/Motif

programs as stand alone programs. If your Moat interpreter is installed in /usr/local,

make this the �rst line of your executable program :

#!/usr/local/bin/moat

1.1 A simple example

The following example is in the programs directory as progEG. The typical structure of

a OSF/Motif program is that the top-level object is a mainWindow. This holds a menu

bar, and a container object such as a form or a rowColumn which in turn holds the rest of

the application objects. So a mainWindow with a list and some buttons in a form would

be created by

xtAppInitialize -class Example

xmMainWindow .main

xmForm .main.form

xmList .main.form.list

xmPushButton .main.form.btn1

xmPushButton .main.form.btn2

The xmForm acts as what is called the \workWindow" of the mainWindow. This

resource would be set by

.main setValues -workWindow .main.form

Values would also be set into the list and buttons:

.main.form.list setValues \

-itemCount 3 \

-items "one, two, three" \

-selectionPolicy single_select

.main.form.btn1 setValues -labelString Quit

A simple example 3

.main.form.btn2 setValues -labelString "Do nothing"

Geometry would be set for the form, to put the objects in their correct relation to each

other. Suppose this is the list on the left, with the two buttons one under the other on

the right:

.main.form.list setValues \

-topAttachment attach_form \

-leftAttachment attach_form \

-bottomAttachment attach_form

.main.form.btn1 setValues \

-topAttachment attach_form \

-leftAttachment attach_widget \

-leftWidget .main.form.list

.main.form.btn2 setValues \

-topAttachment attach_widget \

-topWidget .main.form.btn1 \

-leftAttachment attach_widget \

-leftWidget .main.form.list

Once evrything has been correctly setup, we can tellOSF/Motif to manage all the widgets,

so that they will be shown on screen :

.main manageChild

.main.form manageChild

.main.form.list manageChild

.main.form.btn1 manageChild

.main.form.btn2 manageChild

The behaviour of our application would be set by callback functions :

.main.form.btn1 activateCallback {exit 0}

.main.form.list singleSelectionCallback {

puts stdout "Selected %item"

}

And �nally, windows are created and the main event loop is entered:

. realizeWidget

. mainLoop

Once entered in the main event loop, the application is really running : widgets are

created, displayed, and manipulated accordingly to user events that trigger the associated

callbacks.

Basics 4

1.2 What next ?

Thou shall read this manual !

Tm resource names stick to usual OSF/Motif name with a leading - replacing the XmN

pre�x. The Tm constants are speci�ed by their OSF/Motif name, without the Xm pre�x,

either in upper or lower case.

2 Basics

OSF/Motif use a hierarchy of sub-windows to create interface elements, such as menu

item, push button or text entry �elds. In the X toolkit and OSF/Motif jargon, they are

called \widgets"

2

. Widgets are just those visual objects that can be seen on the screen,

or interacted width by the mouse or keyboard. They are organized in a hierarchy, with

the application itself forming the its root.

Programming a graphic user interface mainly consists of the following steps :

� Creating all the widgets you needs, in a suitable hierarchy.

� Con�guring colors, sizes, alignments, fonts, ... In OSF/Motif , widget get their

con�guration options from so called resources. These resources may be set on a

per widget basis or on a per widget class basis (e.g. "all push buttons should have

red background"). Furthermore, OSF/Motif provides inheritance between widget

classes (for instance, push button have a background color resource, because they

inherit its existance (but not its value) from Label, which inherits it from Primitive,

which inherits it from Core).

Usually, applications provide defaults resources for widget classes, and each user

modify some of them on a per session basis (�le

~

/.Xdefaults).

� Programming your interface to react to user inputs : what function should be called

when the save button is pushed ?

In OSF/Motif jargon, you add \callbacks" to widgets. A call back is a fragment

of Tcl code which is executed on a dedicated event (for instance, execute fputs

stdout "Hello World"g when the mouse button 1 is released over the \push me"

button).

The following sections will detail all this concepts.

2.1 Widget Names

Tcl is a string based language (the only data type is string), and widget are organized

in a hierarchical structure. To accommodate this, the naming of objects within this

hierarchy is similar to the \absolute path names" of Unix �les with a `.' replacing the `/'

of Unix. The application itself is known as `.'. A Form in the application may be known

as `.form1'. A Label in this form may be `.form1.okLabel', and so on.

Note that X toolkit requires that `.' can only have one child (except for dialogs, which

are not mapped inside their parents). This naming convention is the same as in Tk.

2

Widget stands for window objects.

Basics 5

2.2 Widget creation commands

Widgets belong to classes, such as Label, xmPushButton or List. For each class there

is a creation command which takes the pathname of the object as �rst argument with

optional further arguments:

creationCommand widgetName ?managed? resourceList

where :

creationCommand

is the class of the widget your are creating. Basically, all the OSF/Motif XmCreate-

SomeWidget() calls should be binded to a xmSomeWidget Moat command. The

extensive list of currently supported creation command is given below.

widgetName

the full path name of the new widget. Note that this specify both the parent widget

(which should already exists), and the name of the new child.

managed

Before a widget can be displayed, it must be brought under the geometry control of

its parent (similar to placing a Tk widget). This can be done by the manageChild

widget method, or by using the managed argument at creation time.

If present, this option should be the �rst one. A widget might be managed but

unmaped, in which case it is invisible (see -mapedWhenManaged, page 21). The main

use of \not yet managed widget" are menus (when they are not visible), and sub-

widgets which will resize to an unknown dimension at the time of creation of their

parents.

resourceList

An optional succession of resource name/ string value pairs.

For instance :

xmForm .form1 managed

xmLabel .form1.okLabel managed

xmPushButton .form1.cancelButton managed \

-labelString "Get rid of me"

creates a Form form1 as child of `.', a label okLabel and a push button cancelButton as

children of form1. The cancelButton has additional arguments that set the labelString

to \Get rid of me".

The set of classes generally mirrors the OSF/Motif set. Some widgets in OSF/Motif

and X toolkit are not accessible from this binding because they are intended for use in

inheritance only, such as Core, Shell and Primitive.

Gadgets, a OSF/Motif variation of widgets, designed to cope with early very slow X

window server is not supported too, because are not needed any more.

The following basic widget will be detailed in section 7 :

Basics 6

xmPushButton a simple button, xmLabel a �xed piece of text

xmArrowButton with an arrow face, xmTextField one line text editor

xmToggleButton with an on/o� box, xmText a full text editor

xmDrawnButton with user graphics, xmList a list selector,

xmFrame a 3-D border, xmScale a slider on a scale

xmSeparator a simple line, xmScrollBar horizontal or vertical

Manager widgets are used to layout several widgets together. Placing widgets inside

widgets enable to create hierarchies suitable for complex user interface design. Section 8

will discuss the following manager widgets :

xmBulletinBoard simple x,y layout,

xmForm layout widgets with realtional constraints,

xmRowColumn for regular geometry management,

xmPanedWindow multiple panes separated by sashes

Section 13 present special widgets to build menus. They may contain any
avor of

button, separator, or other widgets, in addition to the following :

xmMenuBar a row-Column used to create an horizontal menu.

xmPulldownMenu a row-Column used to create a vertical menu.

xmPopupMenu a menu on its own (transient) window.

xmCascadeButton a special pushbutton to call a sub-menu.

OSF/Motif provides the following more complicated widgets. They are composed of

several graphic entity, but nearly alway appear as a unique widget. Their Moat binding

will be detailed in section 11

xmScrolledWindow for displaying a clip view over another widget,

xmScrolledList a partial view of a list,

xmScrolledText a partial view of a text,

xmMainWindow contains the main application windows, a menu bar, ...

xmCommand a command entry area with a history list,

xmMessageBox message display area on its own window,

xmSelectionBox A list to select from.

xmFileSelectionBox selection of a �le from a list.

OSF/Motif also has convenience functions to create dialogs. These don't create ordi-

nary widgets, but OSF/Motif pretends that they do. They appear in their own (transient)

window, and have push buttons at the bottom line (Ok/Cancel/...). Moat follows this,

and the following dialogs will be described in section 14.

xmBulletinBoardDialog a dialog with arbitrary contents.

xmFormDialog a dialog based on form

xmMessageDialog a dialog showing a message

xmInformationDialog a dialog displaying information

xmPromptDialog a dialog with a prompt area

xmQuestionDialog a dialog asking a question

xmWarningDialog a dialog showing a warning

xmWorkingDialog a dialog showing a busy working message

xmSelectionBoxDialog a dialog based on xmSelectionBox

xmFileSelectionDialog a dialog based on xmFileSelectionBox

Basics 7

When you have to destroy such widgets, you must destroy the real dialog widget, that

is to say the parent of the usually manipulated widget :

xmQuestionDialog .askMe managed

[.askMe parent] destroyWidget

2.3 Widget methods

Creating a widget actually creates a Tcl command known by its path name. This com-

mand should be executed with at least one parameter to either change the behavior of

the object or the value of its components, or to get information about the object. The

�rst parameter acts like a \method" to the object, and speci�es an action that it should

perform.

The general syntax is :

targetWidgetName widgetCommand ?options?

as in the following examples :

.root.label manageChild

.root setValues -title "Hello world"

OSF/Motif uses the concept of inheritance for resources (see section 3) and transla-

tions (see section 5). Moat extend this to methods, which call OSF/Motif function on

the target widget.

2.4 Widget resources

In OSF/Motif jargon \resources" are variables shared between the widgets and the ap-

plication. Their default value enable to easily handle common look and deal across appli-

cation. They are also used to communicate information between the application and the

interface.

Section 3 will describe resource concepts, default value policy and types. A set of

resources, common to many widget, will be described in section 6.

2.5 Widget actions and callbacks

A user interface have to react to user inputs such as a mouse click, or a key stroke. As a

particular user input may takes e�ects both on the interface and on the application, the

reactions may be of two kinds :

Actions:

are behavior internal to OSF/Motif that manage the interface.

Callbacks:

are de�ned by the application. They are used to trigger application's responses to

user input.

Basics 8

Each widget class may de�ne a set of Actions and Callbacks.

Section 5 deals with actions and translations, section 4 will present the main callback

concepts, and section 6 the set of actions and callbacks common to many supported Moat

widgets.

2.6 Translations

In OSF/Motif , reaction to user input are de�ned from a high level point of view : basic

actions includes arming a button, selecting a list item, setting input focus to a particular

widget. On the other hand, basic events are mouse clicks, keystroke and modi�er key

state, etc. when the mouse is over some widget.

OSF/Motif use \translations" table to bind the later to the former.

2.7 The root widget

In earlier versions than 0.8, a specialised interpreter was used, much like Tk's \wish".

To conform to the new extension methods of tcl7.0, this was changed. Part of the result

of this is that the X toolkit world has to be explicitly brought into existence. This also

allows the class and fallback resources to be set, and leaves hooks for things like setting

the application icon to be added later to this binding.

The world manipulation function added is :

xtAppInitialize

it may take parameters of -class and -fallback resources. If the class option

is omitted, the binding will deduce a class by capitalising the �rst letter of the

application name, and { if it was an `x' { also capitalising the second letter.

Subsequently, a bunch a root widget methods have been added to deals with OSF/

Motif features related only to the main application window. These are :

. mainLoop

this will start the application main loop, waitting for and managing events.

. getAppResources rsrc list

Get the application resources. rsrc list is a Tcllist of quadruples f name class

default var g, where name is the name of the resources, class their class. For

each de�ned resource, it search a value in the application default, or in the resource

database, and set the Tclvariable var accordingly. If not found, it sets var to

default .

. processEvent

Process a single event (blocking if none are present). This is usefull only if you want

to design your own main event loop.

. addInput fileId perm tclProc This will add an input handler to moat. fileId

may be one of stdin, stdout, stderr, or a valid opened �le, as returned by open.

perm is a sinle character permision, which might be r, w, or x respectively for read,

write or exception. tclProc is the tcl code that will be executed when i/o is ready.

Resources 9

For instance, the followin example add an interpreter that read and executeMoatcommands

when they are typped in while the interface is running :

Define the interpret function, that handle error.

proc interpret {line} {

set code [catch $line result]

if {$code == 1} then {

puts stderr "$result in :\n\t$line"

} else {

if { $result != "" } {puts stderr $result}

}

puts stderr "% " nonewline

}

Bind it as an input handler.

. addInput stdin r {

interpret [gets stdin]

}

And display the first prompt

puts stderr "% " nonewline

. removeInput inputId Remove the input handler speci�ed by the given identi-

�er. Identi�er are uniq string returned by the corresponding addInput call.

. addTimer interval tclProc Add a timer that will trigger ther execution of the

given Tcl after the speci�ed interval.

. removeTimer timerId Remove the timer speci�ed by the given identi�er. Timer

identi�er are uniq string returned by the corresponding call to addTimer.

3 Resources

Resources are inherited through the class hierarchy, they have default values, and several

di�erent types. In OSF/Motif , several base classes exist, from which actual widgets are

derived. Those classes de�ne a common set of resources, methods and behaviors.

Resources 10

3.1 Resource inheritance

Each widget belongs to a class, whose name is the widget creation command name. Each

widget inherits resources from its super-class. For example, xmLabel is a subclass of

Primitive which in turn is a subclass of Core. From Core it inherits resources such

as -background, -height and -width. From Primitive it inherits resources such as

-foreground. It is necessary to look at these super-classes to have the full resource

list of a xmLabel instance. In addition, each class adds extra resources. For example,

xmLabel has the additional resources -labelType, -labelPixmap and -labelString,

among others.

Some special resource values are inherited through multiple level of the widget hier-

archy at creation time. For instance, the -buttonFontList of a bulletin board might be

inherited from the -defaultFontList of an ancestor sub-classing the abstracts classes

vendorShell or menuShell. In this case, the resource value is copied and won't be mod-

i�ed if the original resource is modi�ed.

For instance, in the following example, the button inherits its -fontList default value

frombulletin board -buttonFontList, on the other hand, the button's background color is

taken from the class defaults, not from the BulletinBoard. Pushing the button will change

the BulletinBoard's -buttonFontList resource, which will not update the button's font

list.

#! moat

xtAppInitialize

xmBulletinBoard .top managed \

-background #A22 \

-buttonFontList "-*-courier-*-o-*--20-*"

xmPushButton .top.bold managed \

-y 10 \

-labelString Bold

xmPushButton .top.quit managed \

-y 40 \

-labelString Quit

.top.bold activateCallback {

.top setValues \

-buttonFontList "-*-courier-bold-o-*--20-*"

}

.top.quit activateCallback {exit 0}

. realizeWidget

. mainLoop

3.2 X Defaults

The usual X Defaults mechanism is used to provide defaults to resources.

Resources 11

Default values are looked in �les desiganted by the XAPPDEFAULTS environemnent

variable, with eventually a locallization directory (desiganted by the LANG variable).

XAPPDEFAULTS defaults to /usr/lib/X11/app-defaults, and LANG is usually not de�ned.

In this simplest case, the looked �le is /usr/lib/X11/app-defaults/ApplicationName,

where ApplicationName is the class name of your application (see xtAppInitialize).

This might be overiden by xrdb(1). Usually, login scripts read a user-customized

resource �le, often named .XDefaults, or .Xresources using xrdb -merge. It is the

usual way a user con�gure its environement.

Last, some application use special con�guration �les, that might also contains some

resources (mwm(1) is a good exemple of this quite complex area, has is looks in not less

than eight di�erent resource �les...)

Those resources �les contain line specifying default resource value for widget or widget

class resources. The syntax is :

resourcePath : value

where value is the string representation for the resource, and resourcePath a dot-

separated path naming a particular resource.

Resource paths start with an optional application name. Without it, the default apply

to all application. The following names in the path may refer to widget class (when

starting with an upper case), to widget names (as de�ned by Moat creation command),

or to application speci�c scoping. The * character may be used to match any portion of

the resource path.

This following examples should clarify this :

*Background for all widgets, in all sessions.

*PushButton.Background for all the push button instances.

xterm*Background for all widgets of the xterm application.

jot.fileMenu.quit.Background for the Quit button in the �leMenu of jot.

3.3 Resource types

Some resource are just string values (as -labelString), but other one have more compli-

cated types (as colors). As Moat is a string language, all values should be manipulated in

string representations, andMoat uses either OSF/Motif internal either speci�c converters

to make the necessary conversions.

This section will brie
y describes the main types used by Tm and Moat.

Basic types : Integer, Boolean and String

In Tcl, evry variable's value is a character string. Nevertheless, some string have a meaning

as an integer, or as a boolean. In Tm, a String could be any Tcl string or list, correctrly

surounded by braces or double-quotes. An Integer is a particular string, with only

decima digits in it. A Boolean is either one of the following words true, yes, on, false,

no, off (in upper/lower/mixed cases), either an integer (0 means False).

Resources 12

Dimension

Dimension are particular Integer measuring distance in screen space. Their actual value

depends on an -units resource, which might de�ne something di�erent horizontaly and

verticaly (when based on current font metrics for instance).

For instance, the following size set a window size to 80x24 characteres :

$window setValues \

-units 100th_font_units \

-width 8000 -height 2400

Color resources

In the X Window system, colors may be speci�ed using portable symbolic names (such

as NavyBlue) de�ned in the /usr/lib/X11/rgb.txt �le, or RGB hexadecimal triplets of

the form #RGB, (with R, G and B being one to four hexa digits), such as #081080 (a dark

blue, de�ned with 8 bits by channel).

Depending of your visual type, the X Window system may alway provide you the

exact color you speci�ed, or give you an hopefully close approximation. RGB values are

not portable, because they depend on the screen hardware gamma, the software contrast

correction, and the graphic board linearity. The rgb.txt �le should be tuned for each

hardware/software con�guration (by your vendor), which is rarely well done.

Font resources

Font names used by X11R4 are fully qualifying dash-separated strings, or aliased nick-

names. The general form of the full name is :

-maker-name-weight-slant-width-serif-11-80-100-100-m-60-encoding

With :

maker : The font maker, such as adobe, bitstream, or sgi.

name : The name for this font, as de�ned by the maker. Adobe's fonts includes Helvetica,

Zapf Chancery, ...

weight : One of bold, medium, normal, demi, or light.

slant : one of o(blic), r(oman).

width : width of the characters, one of normal, narrow, ...

serif : nothing, or sans.

sizes font size, in various units.

encoding : Usually iso8859-1.

The * character might be used to match any of the font speci�er.

On unix machines, the �les /usr/lib/X11/fonts/*/fonts.dir lists all existing fonts

of the actual X server.

Resources 13

Font list

Font lists are coma separated list of fonts. The �rst font in the list is the default one,

the other ones are used in coupound string. This is quite useless by now, because there is

no consensus on how to get multi-font XmStrings, and none of the various proposition is

currently implemented in Tm.

Widget default font list usually derives from one of their ancestor. Default for top-level

shell are set from the VendorShell abstract class, of from the X defaults mechanism.

Pixmap resources

Pixmaps are small rectangular arrays of pixels, used to be drown as button, or to be tiled

to �ll areas.

On color display, pixmaps may be either bi-color, using the -background and -fore

ground resources, either full color. Pixmaps may also be partially transparent, when they

are accompanied by a transparency mask.

Simple bi-color pixmaps are created from a bitmap, using the current foreground and

background colors at the time they are �rst loaded. Once created, the colored pixmap

will be retained in the server's memory by a caching mechanism. At least on some X

servers, this coloring will then be retained until the X Window is restarted. The bitmap

unix command may be used to create or modify bitmaps. See �gure 1 for an example of

pixmap used to �ll a button label.

(screen display)

#! moat

xtAppInitialize

xmPushButton .face managed \

-labelType pixmap -labelPixmap face \

-armPixmap face_no

.face activateCallback {exit 0}

. realizeWidget

. mainLoop

(the corresponding Moat script)

Figure 1: Example of Pixmap button.

Callbacks 14

Enumerated resources

For some resources, the value is given by a symbolic name, which may be chosen only

from a small set of legal values. Tm uses the OSF/Motif standard name, without the

leading XmN pre�x, in a free upper/lower case combination for setValues. Tm will always

return lower case string on getValues.

4 Callbacks

When the user does things to a widget, it may cause the widget to take certain actions.

For example, when a button is pressed it changes appearance to look pressed in. Some of

these actions can have Tcl code attached to them, so that the Tcl code is evaluated when

the action is performed. The Tcl code is said to be attached to a \callback" by a widget

command. For example, a push button has an activateCallback that is called when the

user presses and releases the left mouse button inside the widget; it has an armCallback

that is called when the user presses the mouse button; it has a disarmCallback that is

called when the user releases the mouse button inside the widget.

Tcl code is attached to a callback by giving it as the second argument to the appropriate

widget method. For example,

$btn armCallback {puts "Stop squashing me!!"}

$btn disarmCallback {puts "Ah... that's better"}

$btn activateCallback {puts "Sorry Dave"; exit 0}

The names of the callbacks available for a particular widget are derived from the

resource documentation for OSF/Motif . Each callback ends with the string \Callback"

in its name. Drop the XmN from the Motif description to gain the widget command.

Callbacks are treated di�erently to other resources because the X toolkit treats them

di�erently { the resource is not meant to be handled directly by any ordinary application.

For each Tm class, a short table will list the callbacks names, and the action that �re

them.

4.1 Callback substitution

When OSF/Motif execute a callback, in reaction to some event, it provides it some

parameters (such as the current widget) or additional data revelant to a given class.

Tm follows Tk in providing the powerful mechanism of callback substitution.

Before execution, the Tclcommand list is scanned to look for % character. Each time on

is found, the word that follows is extracted, analyzed, and if recognized, it is substituted

with the corresponding data.

For example, %item in a xmList callback will be replaced by the item selected, and

%item position will be replaced by its position in the list. An example of use of callback

substitution in a list is :

.list singleSelectionCallback {

print_info %item %item_position

}

Callbacks 15

proc print_info {item position} {

puts stdout "item was $item, at position $position"

}

The table below gives the recognized tags. Their meaning will be detailed in the

context of the corresponding callbacks.

%click count %endPos %newinsert %selection type

%closure %item length %pattern length %set

%currInsert %item position %pattern length %startPos

%currInsert %item %pattern %type

%dir length %length %pattern %value length

%dir %mask length %ptr %value

%doit %mask %reason %w

%dragContext %newInsert %selected items

%reason should be implemented in the version 0.9, which is substitued by the reason

why the callback was called.

The possible values, as de�ned in Xm/Xm.h, with the leading XmCR stripped, are listed

in the following table :

activate apply arm

browse select cancel cascading

clipboard data delete clipboard data request command changed

command entered create decrement

default action disarm drag

execute expose extended select

focus gain primary help

increment input lose primary

losing focus map modifying text value

moving insert cursor multiple select no match

none obscured traversal ok

page decrement page increment protocols

resize single select tear off activate

tear off deactivate to bottom to top

unmap value changed

4.2 Callback cross references

The following table list all callbacks supported by Tm (the full method name to add the

callback code is obtained by appending Callback ; they are listed in <Xm/Xm.h>, with a

XmN pre�x), and the class in which they are �rst de�ned :

Actions 16

Name De�ned by Name De�ned by

activate Text/Button losePrimary Text

apply SelectionBox losingFocus Text

arm Button map BulletinBoard

browseSelection List modifyVerify Text

cancel SelectionBox motionVerify Text

cascading CascadeButton multipleSelection List

commandChanged Command noMatch SelectionBox

commandEntered Command

decrement ScrollBar ok SelectionBox

defaultAction List pageDecrement ScrollBar

destroy Core pageIncrement ScrollBar

disarm Button popdown Shell

drag Scale popup Shell

entry RowColumn resize Draw.

expose Draw. simple ?

extendedSelection List singleSelection List

focus BulletinBoard toBottom ScrollBar

gainPrimary Text toPosition (Text)

help Mgr./Prim. toTop ScrollBar

increment Scrollbar unmap BulletinBoard

input DrawingArea valueChanged Text/Scale/ScrollBar

5 Actions and Translations

Actions and translations are X toolkit concepts that exists in Tm too. Each possible user

input have a symbolic name, and they are called \events". Each reaction of the interface

to some event also have a name, they are called the actions.

Widgets may have behaviours, which are table that say what action to �re when event

arises. They are called the translations tables. OSF/Motif applications have translation

tables that enable to use the keyboard to navigate between widgets, and to select them.

This gives keyboard equivalent to mouse actions.

The translation tables are inherited through the class hierarchy. The list of all sup-

ported events and actions is quite long. Look in a OSF/Motif book to �nd about it...

5.1 Adding Actions and Translations

Actions may be added to a widget in a similar way to the C version. In that you de�ne

an action in a translation table which is set in the widget. In this binding, the Tcl code is

placed as the arguments to the action in the translation table. Registering the translation

using the action Tm action links a generic action handler which in turn will handle

the Tcl code. Here is what it looks like to add translation to make an arrow turn left or

right when `l' or `r' is pressed:

xmArrowButton .arrow managed

.arrow setValues -translations \

{<Key>r: action(arrow_direction %w arrow_right)

<Key>l: action(arrow_direction %w arrow_left)}

Actions 17

proc arrow_direction {arrow direction} {

puts stdout "Changing direction to $direction"

$arrow setValues -arrowDirection $direction

}

As with callbacks, they are supported substitutions. In the current versions, the only

one is %w which is substitued with the current widget path (Other substitutions just

return the ERROR!! magic string).

5.2 Trigering Actions

The method callActionProc is available for every widget. The purpose of this is to allow

regresion tests to be performed. This takes an action as further parameter, using the usual

X toolkit syntax. For example, to simulate the return key press occurring within an arrow

button, call the ArmAndActivate() action:

.arrow callActionProc ArmAndActivate()

This sends (by default) a ClientMessage event to the widget. Most widgets ignore

the event for most events, so this is su�cient. Some actions require event detail, though.

For example, when a mouse button release occurs, the widget checks to see if the release

occurred inside or outside the widget. It does this because if the event occurs inside, then

the callbacks attached to the Activate() action are invoked, but otherwise they are not.

To handle this, an event of type ButtonPress, ButtonRelease, KeyPress or KeyRelease

can be prepared with some �elds set. For example, a ButtonRelease occurring within the

arrow can be sent by.

.arrow callActionProc Activate() \

-type ButtonPress \

-x 0 -y 0

Some of the Text manipulation actions require a KeyPress event, such as self-

insert(), which inserts the character pressed. The character is actually encoded as

a keycode, which is a hardware dependant code, too low-level for this binding. To pre-

pare such an event, this toolkit uses keysyms which are abstractions for each type of key

symbol. The alphanumerics have simple representations as themselves (`a', `A', `2', etc).

Others have symbolic names (`space', `Tab', `BackSpace', etc). These are derived from

the X Window Reference manual or in the �le <X11/keysymdefs.h> by removing the

pre�x XK .

For example, to insert the three characters `A a' into .text :

.text callActionProc self-insert() \

-type KeyPress \

-keysym A

.text callActionProc self-insert() \

-type KeyPress \

-keysym space

Actions 18

.text callActionProc self-insert() \

-type KeyPress \

-keysym a

The set of actions that require this level of preparation of the X event is nowhere

documented explicitly. You have to read between the lines of the Motif documentation,

or guess at behaviour (or read Motif source code).

Core 19

6 Base classes

All Tm widgets derive from a small set of classes, namely Core, Primitive, Manager and

Shell. You cannot create any widget of those classes, because they are abstract base

classes. They are used to de�ne sets of resources, behaviors and methods common to

all the derived widget classes which have binding in Tm. This section will describe this

abstract classes.

6.1 The Core Class

The Core class is the ancestor of all Tm widget classes. Hence methods and resources

de�ned in this section equally apply to all Tm objects. The Core class does not implement

any behavior (neither action, translation nor callback), and do even not suppose that

something should be drawn.

6.1.1 Core Methods

The Core class de�nes the basic set of methods common to all derived classes, described

below :

w realizeWidget

Create windows for the widget and its children, usually used only on the main

widget, as in \. realizeWidget."

w destroyWidget

Destroy the widget w , all sub-widgets and the associated Tcl commands. Note that

destroying the main window (. destroyWidget) should gracefully exit the main

loop, while exit 0 should exit the Tcl interpreter.

w mapWidget

Map the given widget onto screen, to make it visible. This is autmatically done

when the widget is managed (see below).

w unmapWidget

Unmap the widget from its parent's screen, making it invisible, but it stay in geom-

etry management.

w manageChild

Bring the widget (back) under geometry management and make it appear (again).

This equivalent to the managed parameter when the widget is created. Some widget

cannot be managed at creation time, for instance when its parent needs special

setting in order to handle it properly. Another example is menus and dialogs : you

might want to create them at the application initialisation, but it is not a good idea

to display them permanently.

w unmanageChild

Un-managing a widget un-map it from screen, making it invisible, and removes it

from geometry management of the parent.

Core 20

w setSensitive Boolean

An insensitive widget do not respond to user input. When such a widget is disabled

(w setSensitive false), it is usually drawn dimmed (using a pattern). The main

use is to disable buttons or menu items that are not allowed in the current state of

the application.

w setValues rsrc value ...

This command is used to change resource values for an already existing widget.

The required parameters are a list of pairs of resource name and string value. The

following change the text colors of widget .frm.text :

.frm.text setValues \

-background lightGray \

-foreground #111

Each widget class de�ne which resource may be set, their types and accepted values.

Resource will be described in general in section 3, and with each widget description.

w getValues rsrc variable ...

This is the dual command : given a parameter list of pairs of Tm resource names and

Tcl names, it set each variable to the current value of the corresponding resource.

OSF/Motif reverse conversions are used for this purpose, and Tm does not actually

provide all of them. This means that you should be able to setup all resource types,

but may not be able to retrieve all of them.

proc flash {widget {fg black} {bg red}} {

$widget getValues \

-background old_bg -foreground old_fg

$widget setValues \

-background $bg -foreground $fg

wait 0.1

$widget setValues \

-background $old_bg -foreground $old_fg

}

w resources Returns the list of all the active resources of the given widget. For

each resource, a quadruple

fname Class type valueg

is returned.

Core 21

w anyCallback tclProc If the widget method name contain the substring "Call-

back", then Tm ask OSF/Motif to register the command list given in argument.

When th especi�ed event occures, it will be interpreted (in the global context).

Section 4 will discusses callbacks in general.

w parent The parent widget command is used to get the parent widget name : if a

regular widget .a.b.c have been created, then set x [.a.b.c parent] should set

the string ".a.b" to the variable x. The exact result is not always obvious, because

some widgets use hiden parents, as in dialogs.

w processTraversaldirection Change the widget that receive the keyboard input

focus. direction may be one of :

current

home

up

down

left

right

next

next tab group

previous tab group

w dragStart rsrc value ...

w dropSiteRegister rsrc value ...

See the Drad and Drop section (page 58) for details about this mehods.

w getGC rsrc value ...

This method is used to retrieve the Xlib graphical context of a widget. There must

be at leat one resource de�ned.

The allowed resources are -background and -foreground. See section on drawn

widget (page 63) for information about user de�ned graphics in Tm widgets.

w callActionProc

Call an action procedure, usually used to test Moat, or your own code.

6.1.2 Core resources

Core 22

Core resource name default value type or legal values

-accelerators none String

-background dynamic Color

-backgroundPixmap none Pixmap

-borderColor dynamic Color

-borderWidth 1 Integer

-heigth dynamic Integer

-mappedWhenManaged True Boolean

-sensitive True Boolean

-translations none String

-width dynamic Integer

-x 0 Integer

-y 0 Integer

The table describes resource common to all widgets. A Core widget (i.e. any widget)

basically is some empty rectangle, with an optional border.

Primitive 23

6.2 The Primitive class

The Primitive class derives from the Core class. This abstract class is designed to de�ne

resouces and behaviour common to any widget that may have something drawn on it. As

the user sees something, Primitive is able to de�ne some very general behaviour, which

appear as translations, actions and callbacks.

6.2.1 Primitive resources

The table below describes the resources revelant for all widget deriving from Primitive.

Primitive resource name default value type or legal values

-bottomShadowColor dynamic Color

-bottomShadowPixmap none Pixmap

-foreground dynamic Color

-highlightColor none Color

-highlightOnEnter False Boolean

-highlightThickness 2 Integer

-navigationType none none

tab group

sticky tab group

exclusive tab group

-shadowThickness 2 Integer

-topShadowColor dynamic Color

-topShadowPixmap none Pixmap

-traversalOn True Boolean

-unitType pixels pixels

100th millimeters

1000th inches

100th points

100th font units

Simple bi-color drawing are done using Primitive's foreground color, over the Core's

background. Other colors default to mixing of this two ones, at the time the widget is

created.

Primitive objects might be highlighted when they are \entered" (get the input focus),

by drawing a border around them, of a given color.

They can also be enclosed by a beweled shadow frame, to make them appear standing

in or out (so called \3D shapes").

Using the -unitType resource, one might choose between screen dependend units (the

default), font related units, or device indepedant units. This will a�ect any subsequent

dimensions resources for that widget only.

-navigationType refer to the way keyboard may be used to navigate between widgets,

without using the mouse. This is used by managers to quickly navigating between input

�elds, for instance using the <Tab> key.

Primitive 24

6.2.2 Primitive callbacks

Method name Why

helpCallback The help key is pressed.

destroyCallback Widget is destroyed.

The table above give the only two callbacks de�ned for evry drawable widgets, for

which the only supported substitution is %w that expand to the widget path.

destroyCallback may be used to automaticaly call some cleanup procedure when a

widget is deleted.

When the Help() action arised (either through the KHelp key, either by a virtual

binding), OSF/Motif looks for a callback to execute in the current widget. If none is

found, it look in the parent, the parent's parent, and so one up to the main window.

Hence, the helpCallbackmay be used to implement a general or a context sensitive help

facility.

6.2.3 Primitive actions

As for any widgets, there is action that match each callback. This actions trigger the

callbacks execution and the standard widget responses, if any.

For the Primitive class, they are :

Help()

If there is no callback de�ned for this widget, this action will propagate the help

action to the widget's parent. If no callback are de�ned upto the root widget, the

action will simply be forgeted.

Destroy()

The callbacks will be called before destroying a widget, to enable application speci�c

cleanup to take place automatically when a widget is destroyed.

6.2.4 Primitive translations

The only translation de�ned for the Primitive class is :

<KHelp>: Help()

which means that the symbolic key KHelp will trigger the Help() action. This key is

de�ned in a keysym �le used by the X Window server.

Shell 25

6.3 Shell classes

The Tm Shell classes are used to de�ne resources and behaviours that are common to

evry widgets that use theyre own window, such as top level windows, popup menues, and

dialogs.

OSF/Motif describe several di�erent base class for this purpose, some inhetited from

X toolkit, some de�ned inside OSF/Motif :

Shell

The basic shell, ancestor of all other abstract shell classes.

TopLevelShell

Top level windows are responsibles of iconization.

TransientShell

Transient windows are temporary windows, that should not stay visible on screen,

and should be iconized along with the top level they are transient for.

VendorShell

Vendor shell resources are setup in the X serveur, and contain meaningfull defaults

for a particular implementation.

WMShell

Handle protocols to assure communications between the application and the window

manager.

The tables below display the resources avalaible for all those shells.

ApplicationShell resource name default value type or legal values

-argc Set by XtInitialize() Integer

-argv Set by XtInitialize() String Array

TopLevelShell resource name default value type or legal values

-iconic False Boolean

-iconName "" String

-iconNameEncoding xa string compound text

xa string

TransientShell resource name default value type or legal values

-transientFor none Widget

Shell 26

VendorShell resource name default value type or legal values

-defaultFontList dynamic font list

-deleteResponse destroy do nothing

unmap

destroy

-keyboardFocusPolicy explicit explicit

pointer

-mwmDecorations -1 Integer

-mwmFunctions -1 Integer

-mwmInputMode -1 Integer

-mwmMenu "" String

-shellUnitType pixels pixels

100th milimeters

1000th inches

100th points

100th font units

-useAsyncGeometry False Boolean

WMShell resource name default value type or legal values

-baseHeight none Integer

-baseWidth none Integer

-heightInc none Integer

-iconMask none Pixmap

-iconPixmap none Pixmap

-iconWindow none Window

-iconX -1 Integer

-iconY -1 Integer

-initialState normalState iconicState

normalState

-input False Boolean

-maxAspectX none Integer

-maxAspectY none Integer

-maxHeight none Integer

-maxWidth none Integer

-minAspectX none Integer

-minAspectY none Integer

-minHeight none Integer

-minWidth none Integer

-title argv[0] String

-titleEncoding xa string compound text

xa string

-transient False Boolean

-waitForWm True Boolean

-widthInc none Integer

-windowGroup Window

-winGravity dynamic Integer

-wmTimeout 5000ms Integer

Shell 27

Shell resource name default value type or legal values

-allowShellResize False Boolean

-geometry "" String

-overrideRedirect False Boolean

-saveUnder False Boolean

-visual Inherited String

Window resizing constraints may be set on its dimensions of the window, or on

its aspect (ratio between width and height). Beside minimal and maximal dimensions,

window dimension may be constrained to follow a given increment. For instance, using

the following setting, the only width allowed for interactive resizing will be 150 and 250 :

-minWidth 100 -baseWidth 50 -widthInc 100 -maxWidth 300

Window aspects are set using a numerator/denominator formula :

minAspectX

minAspectY

�

width

height

�

minAspectX

minAspectY

(1)

Hence, the following setting constrains the width to stay between a third and twice

the height :

-minAspectX 1 -manAspectY 3 -maxAspectX 2 -minAspectY 1

Interactive window resizing may also be ignored by setting the -allowShellResize

resource to False.

Window icon resouces may be used to de�ne the window icon type, its placement, ...

Icons may be drawn using a (possibly partially transparent) pixmap, or by using a

speci�c alternate window (-iconWindow). A window may be setup to appear in iconic

state at creation (-initialState iconicState), and its current state may be retrieved

or changed using the -iconic resource.

xmLabel 28

7 Basic widgets

This section will detail the basic OSF/Motif widgets, from which all the more so�sticated

one derives.

7.1 xmLabel

A label widget is just a small written piece of text. For instance, executing the following

Moat script

#! moat

xtAppInitialize

xmLabel .lbl managed -labelString "Hello world"

. realizeWidget

. mainLoop

would display the following window on your screen :

Note that the text will be broken into seperate lines only if you put newlines in it.

It may contains non-ascii characteres (using the encoding de�ned in the font, usually

ISO8859-1). See �gure 2 for a more complexe example.

Resources

xmLabel 29

(screen display)

#! moat

xtAppInitialize

xmLabel .lbl managed

.lbl setValues -labelString {

If you text contains newlines,

it will be broken into separate lines.

it may contains non-ascii characteres(�a�c�e��~n�o���u).

}

.lbl setValues \

-stringDirection string_direction_r_to_l \

-alignment alignment_end \

-fontList -*-courier-bold-r-*--18-* \

-marginLeft 10 -marginWidth 10 \

-x 200 -y 100

. realizeWidget

. mainLoop

(the corresponding Moat script)

Figure 2: A more complex label example.

xmLabel 30

xmLabel resource name default value type or legal values

-accelerator "" String

-acceleratorText "" String

-alignment center alignment center

alignment beginning

alignment end

-fontList inherited fontList

-labelInsensitivePixmap none Pixmap

-labelPixmap none Pixmap

-labelString widget name String

-labelType string string

pixmap

-marginBottom 0 Integer

-marginHeight 0 Integer

-marginLeft 0 Integer

-marginRight 0 Integer

-marginTop 0 Integer

-marginWidth 0 Integer

-mnemonic "" String

-mnemonicCharSet dynamic String

-recomputeSize True Boolean

-stringDirection l to r string direction l to r

string direction r to l

The label may display the -labelString or -labelPixmap resource, depending of the

-labelType value. Labels are always top/bottom centered (inside their margins), but

may be left or right
ushed or centered, depending on -alignment.

When a label is insensitive, the displayed text is grayed using a 50% pattern. Pixmap

type labels may also be de�ned to display a di�erent pixmap using -labelInsensitive-

Pixmap.

When the displayed material changes, the label may or may not recompute its size,

depending of -recomputeSize.

Some resources are only used in derived class.

The following resources are inherited from the Primitive (page 23), and Core classes

(page 21) :

xmLabel 31

-accelerators (Core) -backgroundPixmap (Core)

-background (Core) -borderColor (Core)

-borderWidth (Core) -bottomShadowColor (Primitive)

-bottomShadowPixmap (Primitive) -foreground (Primitive)

-heigth (Core) -highlightColor (Primitive)

-highlightOnEnter (Primitive) -highlightPixmap (Primitive)

-highlightThickness (Primitive) -mappedWhenManaged (Core)

-navigationType (Primitive) -sensitive (Core)

-shadowThickness (Primitive) -topShadowColor (Primitive)

-topShadowPixmap (Primitive) -translations (Core)

-traversalOn (Primitive) -unitType (Primitive)

-width (Core) -x (Core)

-y (Core)

Callbacks

Label do not de�ne speci�c callbacks, but just inherit them from the Primitive class,

namely helpCallback and destroyCallback.

xmText, xmTextField 32

7.2 xmText, xmScrolledText and xmTextField

Text widgets display a text string, but also allow the user to edit it. A xmTextField

widget display a single-line editable text, while a xmText widget usually span multiple

lines. A xmScrolledText would automatically displays scroll bars if it is larger than the

alloted space on screen. Those xmScrollBars enable the user to change the currently

viewed part of the text.

Selection of parts of text are done by keyboard or mouse interactions, as described

below in the translations.

A scrolled text widget w is a composite widget that have the following childrens :

w.HorScrollBar w.VertScrollBar w.ClipWindow

The associated Tclproc might be used to directly access them, as in the following example :

xmScrolledText .txt managed

set rsrc_list [.txt.ClipWindow resources]

Methods

In addition to the standard Core methods, texts widgets de�ned the following new ones

to deal with selection and clipboard :

txt setString the text

Change the current text to the text .

txt getString

return the whole text as result.

txt getSubString start len var

Set the Tclvariable var to the substring starting at position start for len charac-

teres. If len if larger than some internal threshold, only the �rst part of the text

will be set to var . This method returns either succeded , truncated or failed

.

txt insert position string

Insert string in the text, starting at position position . Use zero to insert at the

beginning of the text.

txt replace start stop string

Replace the portion of text between start and stop by the new value string .

txt setSelection start stop

Set the current selection to the substring starting at start , end ending at stop .

txt getSelection

Returns the primary selection of the text. If nothing is selected, just returns nothing.

xmText, xmTextField 33

txt getSelectionPosition start stop

If there is something selected, set the Tclvariables start and stop accordingly and

returns true, else returns false.

txt clearSelection

deselect the current selection.

txt remove

remove the currently selected part of the text.

txt copy

copy the current selection into the clipboard.

txt cut

copy the current selection into the clipboard, then remove it from the text.

txt paste

replace the current selection by the clipboard contains.

txt setAddMode bool

Set weither or not the text is in \add mode". When in add mode, text insertion

won't modify the current selection.

txt setHighlight start stop mode

Change the highlight appearance of the text between start and stop , but not the

current selection. mode may be either normal , selected or secondary selected

.

txt findString start stop string dir pos

Search the current text for string between the position start and stop . The

direction dir might be either forward , either backward .

If found, the position of the �rst occurence is set to the Tclvariable pos , and it

returns true, else it returns false.

txt getInsertPosition

Returns the position of the insert cursor. Zero is the �rst charactere in the text.

txt setInsertPosition position

Set the cursor insertion point.

txt getLastPosition

Returns the position of the last caractere in the text bu�er, in other words, its

length.

txt scroll lines

Scroll the text widget by lines lines. A positive value scroll it upward, a negative

value backward.

txt showPosition position

Scroll the text such that position become visible.

xmText, xmTextField 34

txt getTopCharacter

Returns the position of the �rst visible charactere of the text in the widget.

txt setTopCharacter position

Scroll the text so that position will be the �rst visible charactere in the widget.

txt disableRedisplay

The text will not being redisplayed.

txt enableRedisplay

The text will redisplay automatically when it changes.

txt getEditable

Returns true if the text is editable (that is, the user can edit it), false if not.

txt setEditable bool

Set the edit permition
ag of the text widget.

txt setSource ref top ins

Set the text edited/displayed by this widget to the one that is also edited/displayed

by the text widget ref . The text will be scrolled such that the top charactere will

be top , and the insertion cursor positionned at ins .

Resources

xmText resource name default value type or legal values

-autoShowCursorPosition True Boolean

-cursorPosition 0 Integer

-editable True Boolean

-editMode single line edit multiple line edit ,

single line edit .

-marginHeight 5 Integer

-marginWidth 5 Integer

-maxLength maxint Integer

-source new source Text Source

-topCharacter 0 Integer

-value "" String

-verifyBell True Boolean

xmTextInput resource name default value type or legal values

-pendingDelete True Boolean

-selectionArray not supported

-selectionArrayCount not supported

-selectThreshold 5 Integer

xmText, xmTextField 35

xmTextOutput resource name default value type or legal values

-blinkRate 500ms Integer

-columns computed from -width Integer

-cursorPositionVisible True Boolean

-fontList Inherited Font list

-resizeHeight False Boolean

-resizeWidth False Boolean

-rows computed from -height Integer

-wordWrap False Boolean

The xmText widget inherits resources from two abstract classes, xmTextInput and

xmTextOutput . xmTextField use the resource subset that correspond to single-line text

(e.g. it does not have a -editMode resource).

The text source resource might be used to open multiple windows editing a single text,

as in the exemple below : It needs a convertion to/from

Pointer !

xmPanedWindow .top managed

xmScrolledText .top.a managed \

-editMode multi_line_edit \

-value {Que j'aime a faire apprendre un nombre utile aux sages,

Immortel Archimede, artiste, ingenieur,

qui de ton jugement peut priser la valeur,

pour moi il eu de serieux avantages.}

xmScrolledText .top.b managed \

-editMode multi_line_edit

.top.b setSource .top.a 0 0

The xmTextInput and xmTextOutput abstract classes are just used to group resources

dedicated to text editing or displaying. Large text should be displayed or edited with the

xmScrolledText widget, which automatically provides scroll bars when needed.

Furthermore, text widgets inherit any resources de�ned in the Core (page 21), Primi-

tive (page 23), and xmLabel (page 28) classes.

xmText, xmTextField 36

-accelerators (Core) -alignment (Label)

-backgroundPixmap (Core) -background (Core)

-borderColor (Core) -borderWidth (Core)

-bottomShadowColor (Primitive) -bottomShadowPixmap (Primitive)

-fontList (Label) -foreground (Primitive)

-heigth (Core) -highlightColor (Primitive)

-highlightOnEnter (Primitive) -highlightPixmap (Primitive)

-highlightThickness (Primitive) -labelPixmap (Label)

-labelString (Label) -labelType (Label)

-mappedWhenManaged (Core) -marginBottom (Label)

-marginLeft (Label) -marginRight (Label)

-marginTop (Label) -navigationType (Primitive)

-recomputeSize (Label) -sensitive (Core)

-shadowThickness (Primitive) -stringDirection (Label)

-topShadowColor (Primitive) -topShadowPixmap (Primitive)

-translations (Core) -traversalOn (Primitive)

-unitType (Primitive) -width (Core)

-x (Core) -y (Core)

Text verify callbacks

The text widgets allows special processing by the application of text entered. After a

character has been typed, or text pasted in, initial processing by the Text widget deter-

mines what the user is entering. This text is then passed to special callback functions.

These functions can make copies of the text, can alter it, or can set a
ag to say do not

display it. Simple uses for this are a password entry widget that reads the text but does

not display it (or echoes `*' instead), or text formatting widgets.

The callback mechanism for this is basically the same as for other callbacks, and similar

sorts of substitutions are allowed. For example, the term %currInsert is replaced by the

current insertion position. Other substitutions do not give a value, but rather give the

name of a Tcl variable. This allows the application to change the value as required. For

example, to turn o� echoing of characters, the following should be done :

.text modifyVerifyCallback {

set %doit false

}

An alternate style would have been to call a separate procedure to handle the work

to be done. The Tcl variable is in the context of the callback caller, so upvar should be

used :

.text modifyVerifyCallback {no_echo %doit}

proc no_echo {doit} {

upvar 1 $doit do_insert

set do_insert false

}

xmText, xmTextField 37

Actually, the Tcl variable here is the global variable Tm Text Doit. For this reason,

variables beginning with Tm are reserved for use by the Tm library.

Callbacks

The supported callbacks are :

Method name Why

helpCallback The help key is pressed.

destroyCallback Widget is destroyed.

activateCallback Some event trigger the Activate action.

gainPrimaryCallback Ownership of the primary selection is gained.

losePrimaryCallback Ownership of the primary selection is loosed.

losingFocusCallback Before losing input focus.

modifyVerifyCallback Before deletion or insertion.

motionVerifyCallback Before moving the insertion point.

valueChangedCallback Some text was deleted or inserted.

The following callbacks substitutions are de�ned for the text speci�c callbacks :

%doit

In a verify callback, the variable name of the
ag to know if we should do it.

%currInsert , %newInsert

In a motionVerifyCallback, the insertion point before and after the projected

motion.

%startPos , %endPos

De�ne a substring in the widget's text string.

%ptr , %length

De�ne the string which is to be modifyed, in a modifyVerify callback. For instance,

the following example may be used to chande inputs to uppercase :

proc allcaps {ptr length} {

upvar 1 $ptr p

upvar 1 $length l

if {$l == 0} return

set upper [string toupper $p]

set p $upper

}

.text modifyVerifyCallback {allcaps %ptr %length}

xmText, xmTextField 38

In addition, text widgets inherit callbacks from the Primitive class, namely help and

destroy callbacks.

Buttons 39

7.3 Buttons

OSF/Motif use several
avors of the button to be pushed, namely :

xmPushButton

The regular button, displaying a text or pixmap label, surrounded by a beveled

shadow. When focus is gained, the button appear brighter, if it is sensitive.

Pressing the mouse change the shadow to make the impression that the button ase

been pushed in, when mouse is released, the button appear normal.

The default push buttons of a dialog may be speci�ed by -showAsDefault true, in

which case an additional border is drawn using the margin resources.

xmArrowButton

A button showing an arrow, whose direction is given by the -arrowDirection re-

source.

xmToggleButton

A button, which displays a state in an on/o� indicator. Usually, a toggle button

consist of a square or diamond indicator with an associated label.

An empty or �lled indicator, or a di�erent pixmap may be used to indicates the

selected/unselected state of the button.

A set of \radio buttons" might be grouped into a manager (see section 8), with the

-radioBehavior set to True, to ensure that only one of them will be selected at a

given time. If the manager's -radioAlwaysOne resource is also set, then there will

alway be exactly one toggle button set.

Buttons 40

Resources

Button resources are :

xmPushButton resource name default value type or legal values

-armColor computed Color

-armPixmap none Pixmap

-defaultButtonShadowThickness 0 Dimension

-fillOnArm True Boolean

-multiClick multiclick discard

multiclick keep

-showAsDefault 0 Dimension

xmArrowButton resource name default value type or legal values

-arrowDirection arrow up arrow up

arrow down

arrow left

arrow right

xmToggleButton resource name default value type or legal values

-fillOnSelect True Boolean

-indicatorOn True Boolean

-indicatorSize none Dimension

-indicatorType n of many n of many

one of many

-selectColor computed Color

-selectInsensitivePixmap none Pixmap

-selectPixmap none Pixmap

-set False Boolean

-spacing 4 Dimension

-visibleWhenOff computed Boolean

Furthermore, text widgets inherit any resources de�ned in the Core (page 21), Primi-

tive (page 23), and Label (page 28) classes.

Buttons 41

-accelerators (Core) -allignment (Label)

-backgroundPixmap (Core) -background (Core)

-borderColor (Core) -borderWidth (Core)

-bottomShadowColor (Primitive) -bottomShadowPixmap (Primitive)

-fontList (Label) -foreground (Primitive)

-heigth (Core) -highlightColor (Primitive)

-highlightOnEnter (Primitive) -highlightPixmap (Primitive)

-highlightThickness (Primitive) -labelPixmap (Label)

-labelString (Label) -labelType (Label)

-mappedWhenManaged (Core) -marginBottom (Label)

-marginHeight (Label) -marginLeft (Label)

-marginRight (Label) -marginRight (Label)

-marginTop (Label) -navigationType (Primitive)

-recomputeSize (Label) -sensitive (Core)

-shadowThickness (Primitive) -stringDirection (Label)

-topShadowColor (Primitive) -topShadowPixmap (Primitive)

-translations (Core) -traversalOn (Primitive)

-unitType (Primitive) -width (Core)

-x (Core) -y (Core)

Callbacks

In addition to the usual helpCallback and destroyCallback, button widgets de�ne the

following new ones :

Method name Why

armCallback Button pressed.

disarmCallback Button released, when the pointer still on it.

activateCallback Some event triger the Activate function.

The toggle button also de�ne the %set callback substitution, which is replaced by the

boolean state of the button.

Decorativ widgets 42

7.4 Decorativ widgets

Simple decorativ widgets include xmFrame and xmSeparator . The former is simply a

container widget that display a frame around its child, using in/out shadowing or etching.

The later is a primitive widget that look like a
at or beveled line ; it is used t separates

items in a display.

This two widget classes do not interact with user input, hence they do not have actions,

callbacks or translations.

New decoration resources are :

xmFrame resource name default value type or legal values

-marginWidth 0 Dimension

-marginHeight 0 Dimension

-shadowType dynamic shadow in

shadow out

shadow etched in

shadow etched out

xmSeparator resource name default value type or legal values

-margin 0 Dimension

-orientation horizontal horizontal

vertical

-separatorType shadow etched in shadow etched in

shadow etched out

no line

single line

double line

single dashed line

double dashed line

In addition, they inherit the following resources from the Primitive (page 23), and

Core classes (page 21) :

-backgroundPixmap (Core)

-background (Core) -borderColor (Core)

-borderWidth (Core) -bottomShadowColor (Primitive)

-bottomShadowPixmap (Primitive) -foreground (Primitive)

-heigth (Core) -mappedWhenManaged (Core)

-shadowThickness (Primitive) -topShadowColor (Primitive)

-topShadowPixmap (Primitive) -unitType (Primitive)

-width (Core) -x (Core)

-y (Core)

xmList 43

7.5 xmList

A list is used to display an ordered set of strings. Mouse or keyboard intercation permit

to select item(s).

A xmScrolledList should be used when the number of item may be too large to

display in the alloted space in the interface : the interface is automatically changed to

display a xmScrollBar (see below) to move the visible part of the list.

A scrolled list widget w is a composite widget that have the following childrens :

w.HorScrollBar w.VertScrollBar w.ClipWindow

The associated names might be used to directly access them, as in the following example :

xmScrolledList .list managed

.list.VertScrollBar setValues -troughColor red

Di�erent selection mode exist :

single select

Only one item may be selected at any time. A button click in the list dese-

lect any previous selection, and select that item. Each time a selection is made,

singleSelectionCallback is called.

multiple select

Shift-clicks may be used to make multiple selections. multipleSelectionCallback

is called each time an item is selected or unselected.

extended select

Any single mouse click deselect anything, and select the current item. Any shift-click

extend the current selection up to the item underbeneath the mouse.

extendedSelectionCallback is called for each item selection or deselection.

browse select

Mouse dragging may be used to select a range of items. Using shift-clicks or shift-

drags, more than one range may be selected at a given time.

browseSelectionCallback is called for each newly selected item, once mouse but-

ton is released.

This is the default mode.

In all mode, the defaultActionCallback is called when the user double-click on an

item. The following methods are provided to manage the selection list :

list addItem item position

Add the speci�ed item (any Tclstring value) to the existing list, at the given

position . If position is 1 or greater, the new item will be the �rst one, sec-

ond one, ... If position is 0, the insertion is made at the end.

xmList 44

list addItemUnselected item position

Normally, if you an item already selected, the second instance will also be selected.

this method ensure that the newly inserted item will not be selected.

list deletePosition position

Delete the item speci�ed by position . If position is 0, the last item is deleted.

list deleteItem item

Delete the �rst occurence of item in the list. A warning will occur if the item does

not exist.

list deleteAllItems

Delete all items in the list.

list selectPosition position notify

Select the item at the given position in the list. If notify is true, the correspond-

ing callback is called.

list selectItem item notify

Select the �rst given item in the list. If notify is true, the corresponding callback

is called.

list deselectItem item

Deselect the �rst given item in the list. If the item is at multiple position in the list,

only the �rst occurence is deselected (even if it's not the selected one !).

list deselectPosition position

Deselect the item at the given position in the list.

list itemExists item

Reply true if the item is in the list, false if not.

list itemPosition item

Return the position in th elist of the given item , or 0 if it does not exists.

list positionSelected position

Reply true if the position is currently selected, false if not.

list setItem item

Scroll the list so that the �rst occurence of item will be at the top of the currently

displayed part of the list.

list setPosition position

Scroll the list so that the position 'th item will be at the top of the currently

displayed part of the list.

list setBottomItem item

Scroll the list so that the �rst occurence of item will be at the bottom of the

currently displayed part of the list.

list setBottomPosition position

Scroll the list so that the position 'th item will be at the bottom of the currently

displayed part of the list.

xmList 45

Resources

List speci�c resources are :

xmList resource name default value type or legal values

-automaticSelection False Boolean

-doubleClickInterval Inherited Integer

-fontList Inherited Font List

-itemCount computed Integer

-items none String array

-listMarginHeight 0 Integer

-listMarginWidth 0 Integer

-listSizePolicy

co

variable constant

resize if possible

variable

-listSpacing 0 Integer

-scrollBarDisplayPolicy as needed as needed

static

-selectedItemCount 0 Integer

-selectedItems none String array

-selectionPolicy browse select browse select

extended select

multiple select

single select

-stringDirection Inherited string direction l to r

string direction r to l

-topItemPosition 1 Integer

-visibleItemCount 1 Integer

Other resources are derived from the Core (page 21), Primitive (page 23), and Label

(page 28) classes.

Callbacks

List speci�c supported callbacks are :

Method name Why

defaultActionCallback An item was double-clicked.

singleSelectionCallback An single item was selected.

multipleSelectionCallback An item was selected,

browseSelectionCallback when in the corresponding

extendedSelectionCallback selection mode.

The following substitutions are de�ned for this callbacks :

%item

The currently selected item string.

%item length

The string length of the currently selected item.

xmList 46

%item position

The current item position, 1 indicating the �rst one.

%selected items

Valid only in multiple, browse or extended callbacks, this substitution returns a

comma-separated list of all currently selected items.

Care should be take to enclose %item and %selected items between braces, to avoid

parsing error when item string contain spaces.

In addition, text widgets inherit the standard callbacks from the Primitive class,

namely helpCallback and destroyCallback.

xmScale 47

7.6 xmScale

A scale widget display a cursor that can be moved between a minimal and a maximal

value.

Resources

The scale widget class de�ne the new resources given below.

xmScale resource name default value type or legal values

-decimalPoints 0 Integer

-fontList Inherited Font List

-highlightOnEnter False Boolean

-highlightThickness 2 Dimension

-maximum 100 Integer

-minimum 0 Integer

-orientation vertical horizontal

vertival

-processsingDirection computed max on bottom

max on left

max on right

max on top

-scaleHeight 0 Dimension

-scaleWidth 0 Dimension

-scaleMultiple (max �min)=10 Integer

-showValue False Boolean

-titleString "" String

-value 0 Integer

The slider may be moved between the integer -minimum and -maximum. Fractional

values are obtained using the -decimalPoints resource, to display a decimal point. The

slider size may be set by -scaleHeight and -scaleWidth. -showValue tells to display

a textual readout of the current value. -scaleMultiple is used for large slider move

(Control-arrow on the keyboard).

Callbacks

Method name Why

valueChangedCallback The scale value had changed.

dragCallback The slider is being dragged.

In this callbacks, the %value substitution may be used to retrieve the current scale

position.

In addition, xmScale inherits the usual helpCallback from the Primitive abstract

class.

xmScrollBar 48

7.7 xmScrollBar

The xmScrollBar widget is made to allow moving the current vue of a widget too

large to be displayed at once. Usually, scroll bars will be part of a xmScrolledWidget,

xmScrolledText or xmScrolledList widget.

An xmScrollBar may be horizontal or vertical (depending on -orientation. It is

composed of the two arrows, a larger rectangle called the scroll region, and a smaller one:

the slider. The data is scrolled by clicking either arrow, clicking inside the scroll region, or

dragging the slider. When the mouse is held down in the scroll region or in either arrow,

the data continues to move at a constant speed.

The following example use two scrollbars to move a target button :

#! moat

xtAppInitialize

xmBulletinBoard .top managed

xmScrollBar .top.h managed \

-orientation horizontal -width 250 \

-y 260 -minimum 10 -maximum 240

xmScrollBar .top.v managed \

-orientation vertical -height 250 \

-x 260 -minimum 10 -maximum 240

xmPushButton .top.target managed \

-labelString "X"

proc track_it {} {

.top.h getValues -value x

.top.v getValues -value y

.top.target setValues -x [expr 8+$x] -y [expr 8+$y]

}

.top.h dragCallback track_it

xmScrollBar 49

.top.v dragCallback track_it

.top.h valueChangedCallback track_it

.top.v valueChangedCallback track_it

track_it

. realizeWidget

. mainLoop

Resources

The scroll bar widget class de�ne the new resources given below.

xmScrollBar resource name default value type or legal values

-increment 1 Integer

-initialDelay 250 ms Integer

-maximum 100 Integer

-minimum 0 Integer

-orientation vertical horizontal

vertical

-pageIncrement 10 Integer

-processsingDirection computed max on bottom

max on left

max on right

max on top

-repeatDelay 50 ms Integer

-showArrows True Boolean

-sliderSize computed Integer

-troughColor computed Color

-value 0 Integer

The -value resource contains the current position of the slider's begin, between

-minimum and maximum � sliderSize.

The slider move between -minimum and -maximum, by -increment steps (clipped at

the ends). Clicking either arrow move by -pageIncrement. -sliderSize may be used

to re
ect the portion of the widget which is currently in the view. -troughColor is the

slider �ll color.

Constant speed moving is parametrized by -repeatDeleay and -initialDelay. If

-showArrows is set to False, the scroll bar won't have arrows on both sides.

xmScrollBar 50

Callbacks

Method name Why

decrementCallback value was decremented.

dragCallback The slider is being dragged.

incrementCallback value was incremented.

pageDecrementCallback value was decremented by pageIncrement.

pageIncrementCallback value was incremented by pageIncrement.

toTopCallback value was reset to minimum.

toBottomCallback value was reset to maximum.

valueChangedCallback The value had changed.

In the corresponding callbacks, the %value substitution will return the current scroll

bar position.

Managers 51

8 Manager widgets

Manager widgets are used to layout several widgets together, enabling to construct com-

plex interfaces from simpler widgets.

Theyre main purpose is to �nd a suitable geometry that enclose all managed children ;

at creation time, when the user manually resize the window, or when widgets dynamically

change itself.

Normaly, manager do not interact with events, they just forward them to to appropri-

ate child. The notable exception is navigation : use of keyboard to change the currently

selected children widget.

8.1 The xmManager abstract class

This class is not a subclass of Primitive, but have some graphical representation, so we

have a subset of Primitive's resources and behavior here.

Resources

The OSF/Motif Manager abstract widget class is used to de�ne the common resource set

described below.

xmManager resource name default value type or legal values

-bottomShadowColor Color

-bottomShadowPixmap none Pixmap

-foreground computed Color

-highlightColor computed Color

-highlightPixmap none Pixmap

-navigationType tab group none

tab group

sticky tab group

exclusive tab group

-shadowThickness 0 Dimension

-stringDirection Inherited string direction l to r

string direction r to l

-topShadowColor computed Color

-topShadowPixmap none Pixmap

-traversalOn True Boolean

-unitType Inherited or pixels pixels

100th millimeters

1000th inches

100th points

100th font units

Callbacks

The Manager abstract class also de�nes callbacks for all manager subclass, descibed in

the table below.

xmManager 52

Method name Why

focusCallback The widget will receive input focus.

helpCallback The usual Help callback.

mapCallback The widget is mapped on screen.

unmapCallback The widget is unmapped from screen.

There is no special substitution associated with this callbacks.

xmBulletinBoard 53

8.2 xmBulletinBoard

The xmBulletinBoard manager is the simplest one. Children widgets are positionned

using their -x and -y resources. There is no particular management when the widget is

resized.

Resources

xmBulletinBoard resource name default value type or legal values

-allowOverlap True Boolean

-autoUnmanage

co

True Boolean

-buttonFontList Inherited Font List

-cancelbutton none Widget

-defaultbutton none Widget

-defaultPosition True Boolean

-dialogStyle computed dialog system modal

dialog primary application modal

dialog application modal

dialog full application modal

dialog modless

dialog work area

-dialogTitle none String

-labelFontList Inherited Font List

-marginHeight 10 Dimension

-marginWidth 10 Dimension

-noResize False Boolean

-resizePolicy any resize any

resize grow

resize none

-shadowType shadow out shadow in

shadow out

shadow etched in

shadow etched out

-textFontList Inherited Font List

-textTranslations

cro

"" String

When -allowOverlap is set to False, any placement of children that would result in

an overlap will be rejected.

Setting -noResize to True will disable any resize of the widget, while -resizePolicy

may be used to control more what kind of resize should be allowed.

xmRowColumn 54

8.3 xmRowColumn

The xmBulletinBoardmanager place its children in one or more columns (or rows). Dif-

ferent packing styles, main direction and size options permit to have aligned or unaligned

rows (or columns), as in the following examples :

-packing pack tight -packing pack column -orientation horizontal

-orientation horizontal -numColumns 2

Resources

xmRowColumn 55

xmRowColumn resource name default value type or legal values

-adjustLast True Boolean

-adjustMargin True Boolean

-entryAlignment alignment center alignment center

alignment beginning

alignment end

-entryBorder 0 Integer

-entryClass dynamic Widget Class

-isAligned True Boolean

-isHomogeneous True Boolean

-labelString

co

"" String

-marginHeight Inherited Dimension

-marginWidth Inherited Dimension

-menuAccelerator ? String

-menuHelpWidget none Widget

-menuHistory none Widget

-menuPost "" String

-mnemonic none KeySym

-mnemonicCharSet dynamic String

-numColumns 1 Integer

-orientation computed horizontal

vertical

-packing computed pack column

pack none

pack tight

-popupEnabled True Boolean

-radioAlwaysOne True Boolean

-radioBehavior False Boolean

-resizeHeight True Boolean

-resizeWidth True Boolean

-rowColumnType

co

work area menu bar

menu option

menu popup

menu pulldown

work area

-spacing 3 or 0 Dimension

-subMenuId none Widget

-whichButton computed Integer

xmForm 56

8.4 xmForm

A form is a manager widget, created to layout widgets using neighbourhood relationship,

such as \this widget should be positionned at the left of this one". This is quit general,

and enable to de�ne widgets that may resize gracefully.

The following exemple gives illustrate this :

This constraints are de�ned in terms of attachment of each side of children widgets

to the form border, to another widget, to a relative position in the form, or to the initial

position of the child. When a resizing occurs, children are adjusted according to this

constraints.

Resources

xmForm resource name default value type or legal values

-fractionBase 100 Integer

-horizontalSpacing 0 Dimension

-rubberPositioning False Boolean

-verticalSpacing 0 Dimension

-sideAttachment attach none attach form

attach none

attach opposite form

attach opposite widget

attach position

attach self

attach widget

-sideOffset 0 Integer

-sidePosition 0 Integer

-sideWidget none Widget

xmPanedWindow 57

8.5 xmPanedWindow

A panned window is a composite widget used to layout several children vertically, each in

its own pane. Pane sepators have a handle to interactively change the amont of vertical

space given to each children.

Resources

xmPanedWindow resource name default value type or legal values

-marginHeight 3 Dimension

-marginWidth 3 Dimension

-refigureMode True Boolean

-sahsHeight 10 Dimension

-sashIndent -10 Dimension

-sashShadowThikness dynamic Dimension

-sahsWidth 10 Dimension

-separatorOn True Boolean

-spacing 8 Dimension

-refigureMode: The children should be reseted to their appropriate positions when the

paned window is resized.

xmPanedWindow Constraint

resource name default value type or legal values

-allowResize True Boolean

-paneMaximum 1000 Dimension

-paneMimimum 1 Dimension

-skipAdjust False Boolean

-skipAdjust : The paned window should not automatically resize this pane.

Drag and Drop 58

9 Drag and Drop

Drag and drop was introduced into OSF/Motif 1.2. It is complicated. We shall �rst look

at the drop side. A widget has to �rst register itself as a drop site, so that when an

attempt is made to drop something on it, it will try to handle it. This registration is done

by the widget method dropSiteRegister . This registration must include Tcl code to

be executed when a drop is attempted, and this is done using the resource -dropProc

. The �rst part of what makes D&D hard is that you have potentially two di�erent

applications attempting to communicate, one dropping and the other accepting the drop.

A protocol is needed between these, so that they share a common language. This is done

in registration by saying what types of protocol are used, and how many there are. This

is done using X atoms, and the major ones are COMPOUND TEXT, TEXT and STRING. Thus

registration is done, for example, by

.l dropSiteRegister \

-dropProc {startDrop %dragContext} \

-numImportTargets 1 \

-importTargets COMPOUND_TEXT

This allows .l to be used as a drop site, accepting COMPOUND TEXT only. Multiple

types are allowed, using the Motif list structure of elements separated by commas as

in "COMPOUND TEXT, TEXT, STRING". When a drop occurs, the procedure startDrop is

called, with one substituted parameter. This parameter is a dragContext, which is a

widget created to by OSF/Motif to handle the drag part of all this. You must include

this parameter, or the next stage doesn't get o� the ground.

When a drag actually occurs, OSF/Motif creates a dragContext widget. A drag is

started by holding down the middle button in a drag source, which is discussed later.

The dragContext widget contains information about the drag source, which is to be

matched up against where the drop occurs. When the drop occurs, by releasing the

middle button, the Tcl code registered as dropProc is executed. This should have the

dragContext widget as parameter. This code may try to determine if the drop should

go ahead, but more normally will just act as a channel through to the actual information

transfer. Still here ? Good ! The dragProc doesn't actually do the information transfer,

it just determines whether or not it is possible, and if it is, what protocols should be used,

and how.

The drop receiver may decide that it wants something encoded as TEXT, followed by

something encoded as COMPOUND TEXT, and then by something in STRING format (beats

me why, though...). it signals this by a (Tcl) list of dropTransfer pairs, consisting of the

protocol (as an X atom name) and the widget that is being dropped on. Huh? Why the

widget that is being dropped on? Because when a drop on a widget takes place, this is

actually dealt with by the dragContext widget, and this is about to hand the transfer over

to a transferWidget. Yes, I know you are using Tcl because you couldn't handle triple

indirections (or rather, don't want too!), but they occur anyway... So here is a simple

dragProc:

Drag and Drop 59

proc startDrop {dragContext} {

$dragContext dropTransferStart \

-dropTransfers {{COMPOUND_TEXT .l}} \

-numDropTransfers 1 \

-transferProc {doTransfer %closure {%value}}

}

The dragContext widget uses the command dropTransferStart to signal the be-

ginning of the information transfer (it could also signal that the drop is to terminate, with

no information transfer). It will accept one chunk of information in the COMPOUND TEXT

format, and pass this on to the .l widget. The information transfer is actually carried on

by the Tcl procedure in the transferProc resource. The only formats currently accepted

(because they are hard-coded into Tm) are COMPOUND TEXT, TEXT and STRING.

The transferProc resource is a function that is called when the drop receiver actually

gets the information dropped on it. This should take at least two parameters. The %value

is substituted for the actual information dropped on it, and %closure is the second

element in the dropTransfer list which should be the widget the drop is happening on.

(Why not let Tm determine this? I dunno. Consistency with OSF/Motif doco? Brain

damage late at night?) Then the dropped on widget can take suitable action. This

function resets the label to the text dropped on it:

proc doTransfer {destination value} {

$destination setValues -labelString $value

}

where destination is substituted by %closure and value by %value.

Drag and Drop 60

10 Send

Tk has a primitive called send. In this, each interpreter has a name, and you can send

Tcl commands from one interpreter to another. When an interpreter receives a sent

command it executes it, and returns any result back to the original interpreter. This

mechanism is also available to Tm so that Motif applications can set commands to other

Motif applications, and also to and from Tk ones.

If a Tm application succeeds in registering its name, from then on, it can send to

another. For example,

send interp2 {puts stdout "hello there"}

instructs \interp2" to display a message.

xmCommand 61

11 More Widgets

11.1 xmCommand

A command widget is composed of an history area (a xmScrolledList), a label to display

the prompt, and a text �eld to edit the current command. The command widget is a sub-

class of xmSelectionBox. You are able to add an extra child, called the work area. In

the example below, this was used to add a button bar :

Methods

The command widget recognize a few new methods :

cmd appendValue command

Append cmd to the string already in the text �eld. The string will be truncated

before the �rst

n encontered.

cmd error error message

Temporalily display the error message at the bottom of the history area. It will

automatically disapear once the user entered another command.

cmd setValue command

Replace the string in the text �eld by command . The old command is not entered in

the history.

Resources

xmCommand resource name default value type or legal values

-command "" String

-historyItems "" String Table

-historyItemCount 0 Integer

-historyMaxItems 100 Integer

-historyVisibleItemCount 8 Integer

-promptString ">" String

Other ones are inherited from xmSelectionBox and its ancestors.

xmCommand 62

Callbacks

Method name Why

commandChangedCallback The current command changed (you type a key in)

commandEnteredCallback The command was entered (return key)

Both of this callbacks suport the %value and %length substitution, which are

replaced by the string (or string length) that �red the callback.

Drawn widgets 63

11.2 xmDrawingArea and xmDrawnButton

Tm (version 1.0) have a very limited support for Xlib drawable area or buttons : you can

only draw string on them.

Drawing methods

To manipulate such a widget, the currently de�ned methods are :

w drawImageString gc x y string

Use the given graphical context gc to draw the string string starting at position

x ,y . The 0,0 coordinate is at the upper-left of the widget.

For instance, the following code produce an hello widget :

xmDrawingArea .top managed

.top exposeCallback {

set gc [.top getGC -foreground black]

.top drawImageString $gc 10 10 "Hello World"

}

Note that it is necessary to use an exposeCallback to get the message redisplayed

when needed.

Resources

xmDrawningArea resource name default value type or legal values

-marginHeight 10 Dimension

-marginWidth 10 Dimension

-resizePolicy resize any resize any

resize grow

resize none

xmDrawnButton resource name default value type or legal values

-multiClick Inherited from display multiclick discard

multiclick keep

-pushButtonEnabled False Boolean

-shadowType shadow out shadow in

shadow out

shadow etched in

shadow etched out

Drawn widgets 64

Callbacks

Method name Why

exposeCallback The area/button should be redrawn

inputCallback A keyboard oy mouse event arrived for the area.

resizeCallback The area/button is resized

acticateCallback The button was activated

armCallback The button is squashed

disarmCallback The button is released

xmMainWindow 65

11.3 xmMainWindow

This composit widget is to be used for the main window of an application. As you add child

to it (a xmMenuBar, a xmCommandWindow, a xmMessageBox, a work area, xmScrollBar(s),

...) it manage them, as you could do manually with a xmForm.

The management of the work area is not imediat : the main window should know

which of is son is the work area widget before you can manage this child. The following

example will produce a prototype interface of a standard application :

#! moat

xtAppInitialize

xmMainWindow .top \

-showSeparator True \

-commandWindowLocation command_below_workspace

xmMenuBar .top.bar managed

xmCascadeButton .top.bar.File managed

xmCascadeButton .top.bar.Help managed

xmDrawingArea .top.work \

-width 500 -height 400 \

-background black

.top setValues -workWindow .top.work

.top.work manageChild

xmCommand .top.com managed \

-historyVisibleItemCount 0 \

-textFontList -*-courier-medium-r-*--12-*-*-*-*-*-*

.top.com commandEnteredCallback {%value}

.top setValues -width 600 -height 500

.top manageChild

. realizeWidget

. mainLoop

Resources

This widget de�nes the following resources (renaming resources of its parents) :

xmMainWindow 66

xmMainWindow resource name default value type or legal values

-commandWindow none Widget

-commandWindowLocation above command above workspace

command below workspace

-mainWindowMarginHeight 0 Dimension

-mainWindowMarginWidth 0 Dimension

-menuBar none Widget

-messageWindow none Widget

-showSeparator False Boolean

Callbacks

Method name Why

commandChangedCallback You type a key in, recall an history item, ...

commandEnteredCallback <key>Enter, double-click, ...

focusCallback The window get focus.

mapCallback The window was mapped on screen.

unmapCallback The window was unmapped.

xmMessageBox 67

12 Boxes

Boxes are complex widgets with a work area, and a line of buttons. They are designed

to handle common layout of several more basic widgets. Boxes might be used as is, or

as building blocks of more complex interfaces. They are also often used inside dialog

(standalone windows), see section 14.

12.1 xmMessageBox

Message box are used to display simple messages. xmMessageBox may also display a

symbol (pixmap) to show warnings, error conditions, ... This may be done by setting the

-dialogType resource, or by specifying a pixmap (-symbolPixmap), as in the following

example :

A message box is a composite widget, whose component children might be man-

aged or unmanaged. This is done using the usual Tm commands manageChild and

unmanageChild applyed on the automatically derived children objects. If the message

box is named w , the known childrens are :

w.Cancel w.Help w.Message

w.OK w.Separator w.Symbol

The next example start a xmMessageBox, then drops unwanted features (buttons and

the separator line), then add an icon, and �nally manage it.

xmMessageBox .message \

-messageString "Some simple message"

foreach child {OK Cancel Help Separator} {

.message.$child unmanageChild

}

.message.Symbol setValues -labelPixmap face

.message manageChild

Resources

xmMessageBox 68

xmMessageBox resource name default value type or legal values

-cancelLabelString "Cancel" String

-defaultButtonType dialog ok button dialog cancel button

dialog help button

dialog ok button

-dialogType dialog message dialog error

dialog information

dialog message

dialog question

dialog warning

dialog working

-helpLabelString "Help" String

-messageAlignment alignment beginning alignment center

alignment beginning

alignment end

-messageString "" String

-minimizeButtons False Boolean

-okLabelString "Ok" String

-symbolPixmap depend of -dialogType Pixmap

Callbacks

Method name Why

cancelCallback The cancel button was activated

helpCallback The help button was activated, or an Help action arise.

okCallback The ok button was activated

focusCallback The window get focus.

mapCallback The window was mapped on screen.

unmapCallback The window was unmapped.

Furthermore, xmMessageBox also inherits destroyCallback from Core.

xmSelectionBox 69

12.2 xmSelectionBox

A selection box is a composit box designed to ease creation of interfaces that enable

the user to choose one (or several) items from a list. A selection box has a number of

component children, which may be managed or unmanaged by the application.

These children widgets are often managed or unmanaged to add or remove elements

from a dialog. OSF/Motif gives no information about types of these widgets, so managing

and unmanaging are really the only two operations that you should perform on these

widgets.

The corresponding Tcl commands are automatically created when the master com-

mand is created.

If the SelectionBox is named w , they are :

w.Apply w.OK

w.Cancel w.Selection

w.Help w.Separator

w.ItemsList w.Text

w.Items

Method name Why

applyCallback The Apply button is released.

cancelCallback The Cancel button is released.

okCallback The Ok button is released.

noMatchCallback Nothing match the selection expression.

The selection box widget also inherits all the callbacks de�ned in xmList, and in

xmText.

%length %value

xmFileSelectionBox 70

12.3 xmFileSelectionBox

The �le selection box is designed to let the user interactively specify a directory and

a �le. A �lter may be used to display only certain �les, based on a regular expression

matching their name.

w.Apply w.FilterLabel w.Items

w.Cancel w.FilterText w.OK

w.DirList w.Help w.Selection

w.Dir w.ItemsList w.Separator

w.Text

Resources

xmFileSelectionBox resource name default value type or legal values

Callbacks

Method name Why

%value %value length %mask %mask length %dir %dir length %pattern

%pattern length

Menus 71

13 Menus

Menus are ... In OSF/Motif , this is done by using separate widgets for all the actors :

A menu bar :

that might be used to group (horizontally by default) several menu buttons. This

will be described in the xmMenuBar section.

menu buttons :

A special subtype of xmPushButton that automatically popup a pulldown menu.

When this widget is created as a child of another popup menu, (hence in a cascading

submenu), a small arrows is added at the right of the label. This will be described

in the xmCascadeButton section.

the pulldown menu : This a special king of xmRowColumn widget, intented to hold sev-

eral buttons (and separators) vertically. This will be described in the next section.

13.1 xmPulldownMenu

A pulldown menu is a special kind of vertical xmRowColumn. It is managed only when

it should be displayed. Pulldown or cascading menu are managed when the user clik on

some xmCascadeButton. Popup menu are managed by a more general event, typicaly

through a de�ned translation of the main window.

Menu items are child widgets (xmLabel, buttons, xmSeparator, or xmCascadeButton).

The order of de�nition gives the item order.

Method name Why

popupCallback The menu is managed and mapped.

popdownCallback The menu is un-mapped.

13.2 xmCascadeButton

The cascade button is a subclass of the usual push button (xmPushButton, page 39) that

force management of a pulldown menu.

xmCascadeButton resource name default value type or legal values

-windowId none Widget

13.3 xmMenuBar

A menu bar is an \ever displayed horizontal pulldown menu", that may only contain

cascade buttons. It is used to permanently display the buttons that trigger the pulldown

menus of an application (for instance at the top of a xmMainWindow).

13.4 Exotic menus

Examples for a left menu bar, that is always managed

A pulldown menu in a dialog, that start to be displayed at the current setting.

A menu that display icons. (A suitable bushes of push buttons) ?

dialog widgets 72

14 Dialogs

Dialogs are widgets that appear in their own window on the screen, when they are man-

aged. Usually, they are modeless : interactions continue with all visible widgets, while

they are visible.

Moatdoes support the modal mode through the dialogStyle resource, when set to

e.g. dialog full application modal . The modal interaction is exited when the dialog

disappear, typically when the user have activated some push button.

14.1 Simple informational dialogs

, , , , , , .

The simplest dialogs are message boxes in a dialog, with an optional icon. The prede-

�ned icons are :

information working prompt

question warning error

Tm de�nes the following Tcl commands to create this dialogs : xmMessageDialog,

xmInformationDialog,xmWorkingDialog, xmPromptDialog, xmQuestionDialog, xmWar-

ningDialog, xmErrorDialog.

As for the corresponding message boxes, a particular child is accessible with the speci�c

Tcl command.

dialog widgets 73

14.2 General manager dialogs

The more general dialogs use the two multi-purpose managers inside. Moat de�nes the

following xmFormDialog and xmBulletinBoardDialog commands to create them.

14.3 xmSelectionDialog

This is the standard OSF/Motif dialog used to select an item. See xmSelectionBox

(page 69) for the corresponding box.

14.4 xmFileSelectionDialog

This is the standard OSF/Motif dialog used to select a directory and a �le name. See

xmFileSelectionBox (page 70) for the corresponding box.

Index

-alignment

alignment_beginning, 30

alignment_center, 30

alignment_end, 30

-arrowDirection

arrow_down, 40

arrow_left, 40

arrow_right, 40

arrow_up, 40

-commandWindowLocation

command_above_workspace, 66

command_below_workspace, 66

-defaultButtonType

dialog_cancel_button, 68

dialog_help_button, 68

dialog_ok_button, 68

-deleteResponse

destroy, 26

do_nothing, 26

unmap, 26

-dialogStyle

dialog_application_modal, 53

dialog_full_application_modal, 53

dialog_modless, 53

dialog_primary_application_modal, 53

dialog_system_modal, 53

dialog_work_area, 53

-dialogType

dialog_error, 68

dialog_information, 68

dialog_message, 68

dialog_question, 68

dialog_warning, 68

dialog_working, 68

-editMode

multiple_line_edit, 34

single_line_edit, 34

-entryAlignment

alignment_beginning, 55

alignment_center, 55

alignment_end, 55

-iconNameEncoding

compound_text, 25

xa_string, 25

-indicatorType

n_of_many, 40

one_of_many, 40

-initialState

iconicState, 26

normalState, 26

-keyboardFocusPolicy

explicit, 26

pointer, 26

-labelType

pixmap, 30

string, 30

-listSizePolicy

constant, 45

resize_if_possible, 45

variable, 45

-messageAlignment

alignment_beginning, 68

alignment_center, 68

alignment_end, 68

-multiClick

multiclick_discard, 40, 63

multiclick_keep, 40, 63

-navigationType

exclusive_tab_group, 23, 51

none, 23, 51

sticky_tab_group, 23, 51

tab_group, 23, 51

-orientation

horizontal, 42, 47, 49, 55

vertical, 42, 49, 55

vertival, 47

-packing

pack_column, 55

pack_none, 55

pack_tight, 55

-processsingDirection

max_on_bottom, 47, 49

max_on_left, 47, 49

max_on_right, 47, 49

max_on_top, 47, 49

-resizePolicy

resize_any, 53, 63

resize_grow, 53, 63

resize_none, 53, 63

-rowColumnType

menu_bar, 55

menu_option, 55

menu_popup, 55

menu_pulldown, 55

work_area, 55

-scrollBarDisplayPolicy

74

Index 75

as_needed, 45

static, 45

-selectionPolicy

browse_select, 43

extended_select, 43

multiple_select, 43

single_select, 43

-separatorType

double_dashed_line, 42

double_line, 42

no_line, 42

shadow_etched_in, 42

shadow_etched_out, 42

single_dashed_line, 42

single_line, 42

-shadowType

shadow_etched_in, 42, 53, 63

shadow_etched_out, 42, 53, 63

shadow_in, 42, 53, 63

shadow_out, 42, 53, 63

-shellUnitType

1000th_inches, 26

100th_font_units, 26

100th_milimeters, 26

100th_points, 26

pixels, 26

-stringDirection

string_direction_l_to_r, 30, 45, 51

string_direction_r_to_l, 30, 45, 51

-titleEncoding

compound_text, 26

xa_string, 26

-unitType

1000th_inches, 23, 51

100th_font_units, 23, 51

100th_millimeters, 23, 51

100th_points, 23, 51

pixels, 23, 51

-verticalSpacing

attach_form, 56

attach_none, 56

attach_opposite_form, 56

attach_opposite_widget, 56

attach_position, 56

attach_self, 56

attach_widget, 56

txt findString start stop string

backward, 33

forward, 33

txt getSubString start len var

failed, 32

succeded, 32

truncated, 32

txt setHighlight start stop mode

normal, 33

secondary_selected, 33

selected, 33

w processTraversal direction

current, 21

down, 21

home, 21

left, 21

next_tab_group, 21

next, 21

previous_tab_group, 21

right, 21

up, 21

-accelerator, 30

-accelerators, 22

-acceleratorText, 30

acticateCallback, 64

action, 16

Actions

adding, 16

activate, 15

activateCallback, 37, 41

addinput, 8

list addItem item position , 43

list addItemUnselected item position ,

43

addtimer, 9

-adjustLast, 55

-adjustMargin, 55

-alignment, 30

-allowOverlap, 53

-allowResize, 57

-allowShellResize, 27

cmd appendValue command , 61

apply, 15

applyCallback, 69

-argc, 25

-argv, 25

arm, 15

armCallback, 41, 64

-armColor, 40

-armPixmap, 40

Arrow, see 39

-arrowDirection, 40

Aspect, 27

sideAttachment, 56

-automaticSelection, 45

-autoShowCursorPosition, 34

Index 76

-autoUnmanage, 53

-background, 22

-backgroundPixmap, 22

-baseHeight, 26

-baseWidth, 26

-blinkRate, 35

Boolean , 11

-borderColor, 22

-borderWidth, 22

bottomAttachment, 56

bottomOffset, 56

bottomPosition, 56

-bottomShadowColor, 23, 51

-bottomShadowPixmap, 23, 51

bottomWidget, 56

Box , see 42

browse_select, 15

browseSelectionCallback, 45

Button, 39

-buttonFontList, 53

w callActionProc, 21

callback, 20

Callback

cross reference, 15

Callback

substitution, 14

Callbacks, 14

cancel, 15

-cancelbutton, 53

cancelCallback, 68, 69

-cancelLabelString, 68

cascading, 15

Choice, see 39

class, 8

txt clearSelection, 33

clipboard_data_delete, 15

clipboard_data_request, 15

%closure, 59

Color , 12

-columns, 35

-command, 61

command_changed, 15

command_entered, 15

commandChangedCallback, 62, 66

commandEnteredCallback, 62, 66

-commandWindow, 66

-commandWindowLocation, 66

Constraints, 27

txt copy, 33

Core, 21

create, 15

%currInsert, 37

-cursorPosition, 34

-cursorPositionVisible, 35

txt cut, 33

Cut and Paste, see Dag and Drop58

-decimalPoints, 47

decrement, 15

decrementCallback, 50

default_action, 15

defaultActionCallback, 45

-defaultbutton, 53

-defaultButtonShadowThickness, 40

-defaultButtonType, 68

-defaultFontList, 26

-defaultPosition, 53

list deleteAllItems, 44

list deleteItem item , 44

list deletePosition position , 44

-deleteResponse, 26

list deselectItem item , 44

list deselectPosition position , 44

Destroy(), 24

destroyCallback, 24, 37

w destroyWidget, 19

dialog_full_application_modal, 72

-dialogStyle, 53

dialogStyle, 72

-dialogTitle, 53

-dialogType, 68

Dimension , 12

%dir, 70

%dir_length, 70

txt disableRedisplay, 34

disarm, 15

disarmCallback, 41, 64

%doit, 37

-doubleClickInterval, 45

drag, 15

Drag and Drop, 58

dragCallback, 47, 50

w dragStart rsrc value ..., 58

w drawImageString gc x y string , 63

-dropProc, 58

dropSiteRegister, 58

w dropSiteRegister rsrc value ..., 58

dropTransfers, 59

dropTransferStart, 59

-editable, 34

-editMode, 34

Index 77

txt enableRedisplay, 34

%endPos, 37

-entryAlignment, 55

-entryBorder, 55

-entryClass, 55

execute, 15

expose, 15

exposeCallback, 64

extended_select, 15

extendedSelectionCallback, 45

fallback resources, 8

-fillOnArm, 40

-fillOnSelect, 40

focus, 15

focusCallback, 52, 66, 68

Font , 12

Font List, 13

-fontList, 30, 35, 45, 47

-foreground, 23, 51

-fractionBase, 56

gain_primary, 15

gainPrimaryCallback, 37

-geometry, 27

txt getEditable, 34

w getGC rsrc value ..., 63

txt getInsertPosition, 33

txt getLastPosition, 33

txt getSelection, 32

txt getSelectionPosition start stop , 32

txt getString, 32

txt getSubString start len var , 32

txt getTopCharacter, 33

w getValues rsrc variable ..., 20

-heightInc, 26

-heigth, 22

help, 15

Help(), 24

helpCallback, 24, 37, 47, 52, 68

-helpLabelString, 68

-highlightColor, 23, 51

-highlightOnEnter, 23, 47

-highlightPixmap, 51

-highlightThickness, 23, 47

-historyItemCount, 61

-historyItems, 61

-historyMaxItems, 61

-historyVisibleItemCount, 61

-horizontalSpacing, 56

Icon, 27

-iconic, 25

-iconMask, 26

-iconName, 25

-iconNameEncoding, 25

-iconPixmap, 26

-iconWindow, 26

-iconX, 26

-iconY, 26

importTargets, 58

-increment, 49

increment, 15

incrementCallback, 50

-indicatorOn, 40

-indicatorSize, 40

-indicatorType, 40

-initialDelay, 49

-initialState, 26

-input, 26

input, 15

inputCallback, 64

txt insert position string , 32

Integer , 11

-isAligned, 55

-isHomogeneous, 55

%item, 45

Item , see 43

%item_length, 45

%item_position, 46

-itemCount, 45

list itemExists item , 44

list itemPosition item , 44

-items, 45

-keyboardFocusPolicy, 26

Label, see 28

-labelFontList, 53

-labelInsensitivePixmap, 30

-labelPixmap, 30

-labelString, 30, 55

-labelType, 30

leftAttachment, 56

leftOffset, 56

leftPosition, 56

leftWidget, 56

%length, 37, 62, 69

-listMarginHeight, 45

-listMarginWidth, 45

-listSizePolicy, 45

-listSpacing, 45

lose_primary, 15

Index 78

losePrimaryCallback, 37

losing_focus, 15

losingFocusCallback, 37

. mainLoop, 8

-mainWindowMarginHeight, 66

-mainWindowMarginWidth, 66

w manageChild, 19

managed, 5

map, 15

mapCallback, 52, 66, 68

-mappedWhenManaged, 22

w mapWidget, 19

-margin, 42

-marginBottom, 30

-marginHeight, 30, 34, 42, 53, 55, 57, 63

-marginLeft, 30

-marginRight, 30

-marginTop, 30

-marginWidth, 30, 34, 42, 53, 55, 57, 63

%mask, 70

%mask_length, 70

-maxAspectX, 26

-maxAspectY, 26

-maxHeight, 26

-maximum, 47, 49

-maxLength, 34

-maxWidth, 26

-menuAccelerator, 55

-menuBar, 66

-menuHelpWidget, 55

-menuHistory, 55

-menuPost, 55

Menus, 71

-messageAlignment, 68

-messageString, 68

-messageWindow, 66

-minAspectX, 26

-minAspectY, 26

-minHeight, 26

-minimizeButtons, 68

-minimum, 47, 49

-minWidth, 26

-mnemonic, 30, 55

-mnemonicCharSet, 30, 55

modifying_text_value, 15

modifyVerifyCallback, 37

motionVerifyCallback, 37

moving_insert_cursor, 15

-multiClick, 40, 63

multiple_select, 15

multipleSelectionCallback, 45

-mwmDecorations, 26

-mwmFunctions, 26

-mwmInputMode, 26

-mwmMenu, 26

Navigation, 16

-navigationType, 23, 51

%newInsert, 37

no_match, 15

noMatchCallback, 69

none, 15

-noResize, 53

-numColumns, 55

numDropTransfers, 59

numImportTargets, 58

obscured_traversal, 15

sideOffset, 56

ok, 15

okCallback, 68, 69

-okLabelString, 68

-orientation, 42, 47, 49, 55

-overrideRedirect, 27

-packing, 55

page_decrement, 15

page_increment, 15

pageDecrementCallback, 50

-pageIncrement, 49

pageIncrementCallback, 50

-paneMaximum, 57

-paneMimimum, 57

parent, 21

txt paste, 33

%pattern, 70

%pattern_length, 70

-pendingDelete, 34

Pixel , see 12

Pixmap , 13

popdownCallback, 71

Popup menu , see 71

popupCallback, 71

-popupEnabled, 55

sidePosition, 56

list positionSelected position , 44

Primitive, 23

. processEvent, 8

-processsingDirection, 47, 49

processtraversal, 21

-promptString, 61

protocols, 15

%ptr, 37

Index 79

Push button, see 39

-pushButtonEnabled, 63

Radio button, see 39

-radioAlwaysOne, 55

-radioBehavior, 55

w realizeWidget, 19

%reason, 15

-recomputeSize, 30

-refigureMode, 57

txt remove, 33

removeinput, 9

removetimer, 9

-repeatDelay, 49

txt replace start stop string , 32

resize, 15

resizeCallback, 64

-resizeHeight, 35, 55

-resizePolicy, 53, 63

-resizeWidth, 35, 55

Resizing, 27

resources, 9, 20

rightAttachment, 56

rightOffset, 56

rightPosition, 56

rightWidget, 56

-rowColumnType, 55

-rows, 35

-rubberPositioning, 56

-sahsHeight, 57

-sahsWidth, 57

-sashIndent, 57

-sashShadowThikness, 57

-saveUnder, 27

-scaleHeight, 47

-scaleMultiple, 47

-scaleWidth, 47

txt scroll lines , 33

-scrollBarDisplayPolicy, 45

-selectColor, 40

%selected_items, 46

-selectedItemCount, 45

-selectedItems, 45

-selectInsensitivePixmap, 40

-selectionArray, 34

-selectionArrayCount, 34

-selectionPolicy, 45

list selectItem item notify , 44

-selectPixmap, 40

list selectPosition position notify , 44

-selectThreshold, 34

-sensitive, 22

-separatorOn, 57

-separatorType, 42

-set, 40

txt setAddMode bool , 33

list setBottomItem item , 44

list setBottomPosition position , 44

txt setEditable bool , 34

txt setHighlight start stop mode , 33

txt setInsertPosition position , 33

list setItem item , 44

list setPosition position , 44

txt setSelection start stop , 32

w setSensitive Boolean , 19

txt setSource ref top ins , 34

txt setTopCharacter position , 34

cmd setValue command , 61

w setValues rsrc value ..., 20

-shadowThickness, 23, 51

-shadowType, 42, 53, 63

Shell, 25

-shellUnitType, 26

-showArrows, 49

-showAsDefault, 40

txt showPosition position , 33

-showSeparator, 66

-showValue, 47

single_select, 15

singleSelectionCallback, 45

-skipAdjust, 57

Slider , see 47, see 48

-sliderSize, 49

-source, 34

-spacing, 40, 55, 57

%startPos, 37

stdin, 8

String , 11

-stringDirection, 30, 45, 51

-subMenuId, 55

-symbolPixmap, 68

tear_off_activate, 15

tear_off_deactivate, 15

Text, see 32

-textFontList, 53

-textTranslations, 53

Timer, 9

-title, 26

-titleEncoding, 26

-titleString, 47

to_bottom, 15

to_top, 15

Index 80

toBottomCallback, 50

Toggle button, see 39

topAttachment, 56

-topCharacter, 34

-topItemPosition, 45

TopLevelShell, 25

topOffset, 56

topPosition, 56

-topShadowColor, 23, 51

-topShadowPixmap, 23, 51

topWidget, 56

toTopCallback, 50

transferProc, 59

-transient, 26

-transientFor, 25

TransientShell, 25

Translations

adding, 16

-translations, 22

-traversalOn, 23, 51

-troughColor, 49

-unitType, 23, 51

w unmanageChild, 19

unmap, 15

unmapCallback, 52, 66, 68

w unmapWidget, 19

-useAsyncGeometry, 26

-value, 34, 47, 49

%value, 47, 50, 59, 62, 69, 70

value_changed, 15

%value_length, 70

valueChangedCallback, 37, 47, 50

VendorShell, 25

-verifyBell, 34

-verticalSpacing, 56

-visibleItemCount, 45

-visibleWhenOff, 40

-visual, 27

%w, 17

-waitForWm, 26

-whichButton, 55

sideWidget, 56

widget methods, 7

widget path names, 4

-width, 22

-widthInc, 26

Window resizing, 27

-windowGroup, 26

-windowId, 71

-winGravity, 26

WMShell, 25

-wmTimeout, 26

-wordWrap, 35

-x, 22

Xlib drawing, 63

xmTextOutput, 35

xmArrowButton, 39

xmBulletinBoard, 53

xmBulletinBoardDialog, 73

xmCascadeButton, 71

xmCommand, 61

xmDrawingArea, 63

xmDrawnButton, 63

xmErrorDialog, 72

xmFileSelectionBox, 70

xmFileSelectionDialog, 73

xmForm, 56

xmFormDialog, 73

xmFrame, 42

xmFrame, 42

xmInformationDialog, 72

xmLabel, 28

xmList, 43

xmMainWindow, 65

xmManager, 51

xmMenuBar, 71

xmMessageBox, 67

xmMessageDialog, 72

xmPanedWindow, 57

xmPromptDialog, 72

xmPulldownMenu, 71

xmPushButton, 39

xmQuestionDialog, 72

xmRowColumn, 54

xmScale, 47

xmScrollBar, 48

xmScrolledList , see 43

xmScrolledText , see 32

xmSelectionBox, 69

xmSelectionDialog, 73

xmSeparator, 42

xmSeparator, 42

xmText, 32

xmTextField, 32

xmTextInput, 35

xmToggleButton, 39

xmWarningDialog, 72

xmWorkingDialog, 72

xtAppInitialize, 11

xtAppInitialize, 8

Index 81

-y, 22

Index 82

Contents

1 Getting Started 2

1.1 A simple example : 2

1.2 What next ? : 4

2 Basics 4

2.1 Widget Names : 4

2.2 Widget creation commands : 5

2.3 Widget methods : 7

2.4 Widget resources : 7

2.5 Widget actions and callbacks : 7

2.6 Translations : 8

2.7 The root widget : 8

3 Resources 9

3.1 Resource inheritance : 10

3.2 X Defaults : 10

3.3 Resource types : 11

4 Callbacks 14

4.1 Callback substitution : 14

4.2 Callback cross references : 15

5 Actions and Translations 16

5.1 Adding Actions and Translations : 16

5.2 Trigering Actions : 17

6 Base classes 19

6.1 The Core Class : 19

6.1.1 Core Methods : 19

6.1.2 Core resources : 21

6.2 The Primitive class : 23

6.2.1 Primitive resources : 23

6.2.2 Primitive callbacks : 24

6.2.3 Primitive actions : 24

6.2.4 Primitive translations : 24

6.3 Shell classes : 25

7 Basic widgets 28

7.1 xmLabel : 28

7.2 xmText, xmScrolledText and xmTextField : : : : : : : : : : : : : : : : : 32

7.3 Buttons : 39

7.4 Decorativ widgets : 42

7.5 xmList : 43

7.6 xmScale : 47

7.7 xmScrollBar : 48

Index 83

8 Manager widgets 51

8.1 The xmManager abstract class : 51

8.2 xmBulletinBoard : 53

8.3 xmRowColumn : 54

8.4 xmForm : 56

8.5 xmPanedWindow : 57

9 Drag and Drop 58

10 Send 60

11 More Widgets 61

11.1 xmCommand : 61

11.2 xmDrawingArea and xmDrawnButton : 63

11.3 xmMainWindow : 65

12 Boxes 67

12.1 xmMessageBox : 67

12.2 xmSelectionBox : 69

12.3 xmFileSelectionBox : 70

13 Menus 71

13.1 xmPulldownMenu : 71

13.2 xmCascadeButton : 71

13.3 xmMenuBar : 71

13.4 Exotic menus : 71

14 Dialogs 72

14.1 Simple informational dialogs : 72

14.2 General manager dialogs : 73

14.3 xmSelectionDialog : 73

14.4 xmFileSelectionDialog : 73

